The Effect of the FIFA 11+ Warm-Up Program on Knee Instability and Motor Performance in Male Youth Soccer Players
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Procedures
2.3. Intervention
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
7. Implications and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DKV | Dynamic knee valgus |
ACL | Anterior cruciate ligament |
YBT | Y balance test |
References
- Krutsch, W.; Zeman, F.; Zellner, J.; Pfeifer, C.; Nerlich, M.; Angele, P. Increase in ACL and PCL injuries after implementation of a new professional football league. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Frobell, R.B.; Roos, H.P.; Roos, E.M.; Roemer, F.W.; Ranstam, J.; Lohmander, L.S. Treatment for acute anterior cruciate ligament tear: Five year outcome of randomised trial. BMJ 2013, 346, f232. [Google Scholar] [CrossRef] [PubMed]
- Faude, O.; Rößler, R.; Junge, A. Football injuries in children and adolescent players: Are there clues for prevention? Sports Med. 2013, 43, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Kosher, R.A.; Ferrari, D. Dlx5 is a positive regulator of chondrocyte differentiation during endochondral ossification. Dev. Biol. 2002, 252, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Quatman-Yates, C.; Hewett, T.E. A ‘plane’ explanation of anterior cruciate ligament injury mechanisms: A systematic review. Sports Med. 2010, 40, 729–746. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Reducing knee and anterior cruciate ligament injuries among female athletes: A systematic review of neuromuscular training interventions. J. Knee Surg. 2005, 18, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Ford, K.R.; Hewett, T.E. The effects of hip range of motion on knee mechanics during cutting tasks. Am. J. Sports Med. 2009, 37, 595–602. [Google Scholar]
- Padua, D.A.; David, R.B.; Micheal, A.C. Neuromuscular Characteristics of Individuals Displaying Excessive Medial Knee Displacement. J. Athl. Train. 2012, 47, 525–536. [Google Scholar] [CrossRef]
- Claiborne, T.L.; Armstrong, C.W.; Gandhi, V.; Pincivero, D.M. Relationship between Hip and Knee Strength and Knee Valgus during a Single Leg Squat. J. Appl. Biomech. 2006, 22, 41–50. [Google Scholar] [CrossRef]
- Krutsch, W.; Memmel, C.; Krutsch, V.; Angele, P.; Tröß, T.; Der Fünten, K.A.; Meyer, T. High return to competition rate following ACL injury—A 10-year media-based epidemiological injury study in men’s professional football. Eur. J. Sport Sci. 2020, 20, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Silvers, H.J.; Mandelbaum, B.R.; Adams, D.A. The efficacy of the FIFA 11+ program in the prevention of ACL injuries in soccer players: A review of the literature. Am. J. Sports Med. 2007, 35, 1885–1893. [Google Scholar]
- Seyedi, M.; Zarei, M.; Daneshjoo, A.; Rajabi, R.; Shirzad, E.; Mozafaripour, E. Effects of FIFA 11 + warm-up program on kinematics and proprioception in adolescent soccer players: A parallel-group randomized control trial. Sci. Rep. 2023, 13, 5527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dix, C.; Arundale, A.; Silvers-Granelli, H.; Marmon, A.; Zarzycki, R.; Snyder-Mackler, L. Biomechanical Changes During a 90° Cut in Collegiate Female Soccer Players With Participation in the 11+. Int. J. Sports Phys. Ther. 2021, 16, 671. [Google Scholar] [CrossRef] [PubMed]
- Kilding, A.E.; Tunstall, H.; Kuzmic, D. Suitability of FIFA’s “The 11” Training Programme for Young Football Players—Impact on Physical Performance. J. Sports Sci. Med. 2008, 7, 320–326. [Google Scholar] [PubMed] [PubMed Central]
- Sadigursky, D.; Braid, J.A.; De Lira, D.; Machado, B.A.B.; Carneiro, R.J.F.; Colavolpe, P.O. The FIFA 11+ injury prevention program for soccer players: A systematic review. BMC Sports Sci. Med. Rehabil. 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uhlár, Á.; Ambrus, M.; Lacza, Z. Dynamic valgus knee revealed with single leg jump tests in soccer players. J. Sports Med. Phys. Fit. 2023, 63, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Steffen, K.; Emery, C.A.; Romiti, M.; Kang, J.; Bizzini, M.; Dvorak, J.; Finch, C.F.; Meeuwisse, W.H. High adherence to a neuromuscular injury prevention programme (FIFA 11+) improves functional balance and reduces injury risk in Canadian youth female football players: A cluster randomised trial. Br. J. Sports Med. 2013, 47, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.N.; Chmielewski, T.; Rudolph, K.S.; Buchanan, T.S.; Snyder-Mackler, L. Dynamic knee stability: Current theory and implications for clinicians and scientists. J. Orthop. Sports Phys. Ther. 2001, 31, 546–566. [Google Scholar] [CrossRef]
- Pfile, K.R.; Noyes, F.R. Different exercise training interventions and drop-landing biomechanics in high school female athletes. J. Athl. Train. 2013, 48, 450–462. [Google Scholar] [CrossRef]
- Perrin, D.H.; Noyes, F.R. Plyometric training in female athletes: Decreased impact forces and increased hamstring torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar]
- Ozmen, T.; Aydogmus, M.; Yana, M.; Simsek, A. Effect of core strength training on balance, vertical jump height and throwing velocity in adolescent male handball players. J. Sports Med. Phys. Fit. 2020, 60, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, B.; Wąż, P.; Zorena, K. Impact of Three Strengthening Exercises on Dynamic Knee Valgus and Balance with Poor Knee Control among Young Football Players: A Randomized Controlled Trial. Healthcare 2021, 9, 558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Straub, R.K.; Powers, C.M. A Biomechanical Review of the Squat Exercise: Implications for Clinical Practice. Int. J. Sports Phys. Ther. 2024, 19, 490–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soligard, T.; Nilstad, A.; Steffen, K.; Myklebust, G.; Holme, I.; Dvorak, J.; Bahr, R.; Andersen, T.E. Compliance with a comprehensive warm-up programme to prevent injuries in youth football. Br. J. Sports Med. 2010, 44, 787–793. [Google Scholar] [CrossRef]
- Van der Horst, N.; Smits, D.W.; Petersen, J.; Goedhart, E.A.; Backx, F.J. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Daneshjoo, A.; Rahnama, N.; Mokhtar, A.H.; Yusof, A. Bilateral and unilateral asymmetries of isokinetic strength and flexibility in male young professional soccer players. J. Hum. Kinet. 2013, 36, 45–53. [Google Scholar] [CrossRef]
- Bizzini, M.; Dvorak, J. FIFA 11+: An effective programme to prevent football injuries in various player groups worldwide—A narrative review. Br. J. Sports Med. 2015, 49, 577–579. [Google Scholar] [CrossRef]
- Gatterer, H.; Ruedl, G.; Faulhaber, M.; Regele, M.; Burtscher, M. Effects of the performance level and the FIFA “11” injury prevention program on the injury rate in Italian male amateur soccer players. J. Sports Med. Phys. Fit. 2012, 52, 165–174. [Google Scholar]
- Hübscher, M.; Zech, A.; Pfeifer, K. Effect of injury prevention programs on injury rate in soccer players: A meta-analysis. Br. J. Sports Med. 2010, 44, 823–828. [Google Scholar]
- Myer, G.D.; Brent, J.L.; Ford, K.R. Neuromuscular training to prevent anterior cruciate ligament injury in female athletes. Sports Health 2011, 3, 52–61. [Google Scholar]
- McCall, A.; Carroll, K.; Ekstrand, J. The influence of the FIFA 11+ injury prevention program on physical performance in football players. Scand. J. Med. Sci. Sports 2015, 25, 87–95. [Google Scholar]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Gee, T.I.; Morrow, R.A.; Stone, M.R.; Bishop, D.C. A neuromuscular training program enhances dynamic neuromuscular control and physical performance in court-sport athletes. Transl. Sports Med. 2020, 3, 9–15. [Google Scholar] [CrossRef]
- Grooms, D.R.; Page, S.J.; Onate, J.A. Neuroplasticity in response to ACL injury: Feedback and feedforward adaptations. Neuroscience 2013, 263, 76–85. [Google Scholar] [CrossRef]
- Emery, C.A.; Roy, T.O.; Whittaker, J.L.; Nettel-Aguirre, A.; McAllister, M.T.; Brison, R.J.; Meeuwisse, W.H. Implementation and effectiveness of the FIFA 11+ injury prevention program in youth soccer players: A randomized trial. Clin. J. Sport Med. 2015, 25, 353–359. [Google Scholar]
- Myer, G.D.; Ford, K.R.; Palumbo, J.P.; Hewett, T.E. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J. Strength Cond. Res. 2005, 19, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Jay, H. Effect of lower-extremity muscle fatigue on postural control. Arch. Phys. Med. Rehabil. 2004, 85, 589–592. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Barber-Westin, S.D.; Hewett, T.E. The effects of balance training on dynamic balance in athletes. J. Sports Sci. Med. 2005, 4, 210–217. [Google Scholar]
- Granacher, U.; Muehlbauer, T.; Zahner, L.; Gollhofer, A.; Kibele, A.; Willimczik, K.; Schmidtbleicher, D. Promoting balance and strength in the elderly: A systematic review of balance training programs. Sports Med. 2010, 40, 277–300. [Google Scholar]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Group | Mean ± SD | p-Value | |
---|---|---|---|
Body mass (kg) | control | 55.1 ± 9.4 | >0.05 |
FIFA+ | 59.0 ± 6.4 | ||
Body height (cm) | control | 166.5 ± 8.9 | >0.05 |
FIFA+ | 170.4 ± 6.6 | ||
BMI (kg/m2) | control | 19.2 ± 1.9 | >0.05 |
FIFA+ | 20.3 ± 2.4 | ||
Sport experience (years) | control | 2.0 ± 0.4 | >0.05 |
FIFA+ | 2.2 ± 0.4 |
Left | Right | |||||
---|---|---|---|---|---|---|
PRE | POST | p-Value | PRE | POST | p-Value | |
Extension | ||||||
G1—intervention | 215.8 ± 43.3 | 234.1 ± 45.1 | <0.05 | 217 ± 26.8 | 239.6 ± 27.41 | <0.05 |
G2—control | 190.2 ± 12.5 | 192.8 ± 11.1 | 0.15 | 220 ± 37.7 | 225.3 ± 40 | <0.05 |
Flexion | ||||||
G1—intervention | 174.2 ± 37.6 | 191 ± 34.1 | <0.05 | 179.4 ± 37.8 | 194.9 ± 36.9 | <0.05 |
G2—control | 191.6 ± 47.7 | 191.1 ± 41.9 | 0.08 | 188 ± 33.7 | 191.6 ± 32.8 | <0.05 |
H/Q ratio | ||||||
G1—intervention | 0.84 ± 0.2 | 0.84 ± 0.17 | 0.85 | 0.83 ± 0.15 | 0.82 ± 0.18 | 0.38 |
G2—control | 1.02 ± 0.28 | 0.99 ± 0.23 | 0.2 | 0.89 ± 0.27 | 0.88 ± 0.26 | 0.71 |
PRE | POST | p-Value | |
---|---|---|---|
Y Balance | |||
Anterior | |||
Control | 3.93 ± 2.94 | 3.07 ± 2.38. | 0.35 |
FIFA+ | 5.2 ± 4.24 | 6.13 ± 4.99 | 0.62 |
Posteromedial | |||
Control | 5.28 ± 4.51 | 5 ± 5.57 | 0.86 |
FIFA+ | 3.6 ± 5.6 | 8.27± 9.35 | 0.13 |
Posterolateral | |||
Control | 7.07 ± 5.5 | 4.93 ± 4.07 | 0.22 |
FIFA+ | 8.6 ± 7.15 | 6.07 ± 4.08 | 0.28 |
Lower limb Power (W/kg) | |||
Control | 13.61 ± 1.37 | 13.09 ± 3.69 | 0.85 |
FIFA+ | 13.58 ± 1.13 | 14.81 ± 1.13 | <0.05 |
Knee ROM (degrees) | |||
Control | 136.1 ± 6.64 | 136.2 ± 5.24 | 0.9 |
FIFA+ | 131.7 ± 5.7 | 135 ± 3.77 | 0.02 |
Agility (s) | |||
Control | 15.06 ± 1.03 | 14.93 ± 1.04 | 0.06 |
FIFA+ | 14.96 ± 0.97 | 14.38 ± 1.18 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soussi, B.; Horváth, T.; Lacza, Z.; Ambrus, M. The Effect of the FIFA 11+ Warm-Up Program on Knee Instability and Motor Performance in Male Youth Soccer Players. Sensors 2025, 25, 2425. https://doi.org/10.3390/s25082425
Soussi B, Horváth T, Lacza Z, Ambrus M. The Effect of the FIFA 11+ Warm-Up Program on Knee Instability and Motor Performance in Male Youth Soccer Players. Sensors. 2025; 25(8):2425. https://doi.org/10.3390/s25082425
Chicago/Turabian StyleSoussi, Badis, Tamás Horváth, Zsombor Lacza, and Mira Ambrus. 2025. "The Effect of the FIFA 11+ Warm-Up Program on Knee Instability and Motor Performance in Male Youth Soccer Players" Sensors 25, no. 8: 2425. https://doi.org/10.3390/s25082425
APA StyleSoussi, B., Horváth, T., Lacza, Z., & Ambrus, M. (2025). The Effect of the FIFA 11+ Warm-Up Program on Knee Instability and Motor Performance in Male Youth Soccer Players. Sensors, 25(8), 2425. https://doi.org/10.3390/s25082425