Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Apparatus
2.2. Preparation of LIGF/LIG Electrode
2.3. LIGF/LIG Electrode-Based Glucose Sensor Fabrication and Cu NP Electroplating
2.4. Electrochemical Characterization LIGF/LIG Electrode-Based Glucose Sensor in Original and Bent States
3. Results and Discussion
3.1. Material Characterization
3.2. Electrochemical Characterization of Bare LIGF and Cu NP/LIGF Electrodes by CV
3.3. Electrochemical Characterization of Cu NP/LIGF/LIG Electrode for Glucose Detection
3.4. Electrochemical Characterization of Cu NP/LIGF/LIG-Electrode-Based Glucose Sensor Under Bending at 0°, 45°, 90°, 135°, and 180°
3.5. Stability of the Fabricated Cu NP/LIGF/LIG Electrode-Based Glucose Sensor Under Bending Angles of 0°, 45°, 90°, 135°, and 180°
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, W.; Sun, Y.; Xi, J.; Abdurhman, A.A.M.; Ren, J.; Duan, H. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose. Anal. Chim. Acta 2016, 903, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Munje, R.D.; Muthukumar, S.; Prasad, S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics. Sens. Actuators B Chem. 2017, 238, 482–490. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018, 109, 75–82. [Google Scholar] [CrossRef]
- Huang, C.; Hao, Z.; Qi, T.; Pan, Y.; Zhao, X. An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. J. Mater. 2020, 6, 308–314. [Google Scholar] [CrossRef]
- Guess, M.; Soltis, I.; Rigo, B.; Zavanelli, N.; Kapasi, S.; Kim, H.; Yeo, W.-H. Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring. Soft Sci. 2023, 3, 23. [Google Scholar] [CrossRef]
- Liu, X.; Lillehoj, P.B. Embroidered electrochemical sensors for biomolecular detection. Lab A Chip 2016, 16, 2093–2098. [Google Scholar] [CrossRef]
- Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.-S.; et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Santos-Ceballos, J.C.; Salehnia, F.; Güell, F.; Romero, A.; Vilanova, X.; Llobet, E. Room-Temperature ammonia sensing using polyaniline-coated laser-induced graphene. Sensors 2024, 24, 7832. [Google Scholar] [CrossRef]
- Gao, J.; He, S.; Nag, A. Electrochemical detection of glucose molecules using laser-induced graphene sensors: A review. Sensors 2021, 21, 2818. [Google Scholar] [CrossRef] [PubMed]
- Nasraoui, S.; Ameur, S.; Al-Hamry, A.; Ben Ali, M.; Kanoun, O. Development of an efficient voltammetric sensor for the monitoring of 4-aminophenol based on flexible laser Induced graphene electrodes modified with MWCNT-PANI. Sensors 2022, 22, 833. [Google Scholar] [CrossRef]
- Martín, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; et al. Epidermal microfluidic electrochemical detection system: Enhanced sweat sampling and metabolite detection. ACS Sensors 2017, 2, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.C.; Chen, J.L.; Liao, Y.H.; Chen, J.T.; Lin, C.Y.; Lin, J.W.; Jhang, C.Y.; Chen, R.T. Fabrication and characteristic analysis of a remote real-time monitoring applied to glucose sensor system based on microfluidic framework. IEEE Sens. J. 2015, 15, 3234–3240. [Google Scholar] [CrossRef]
- Chen, C.; Ran, R.; Yang, Z.; Lv, R.; Shen, W.; Kang, F.; Huang, Z.-H. An efficient flexible electrochemical glucose sensor based on carbon nanotubes/carbonized silk fabrics decorated with Pt microspheres. Sens. Actuators B Chem. 2018, 256, 63–70. [Google Scholar] [CrossRef]
- Lee, H.; Song, C.; Hong, Y.S.; Kim, M.S.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Park, S.J.; Yun, K.-S.; Kang, J.Y.; Lee, S.H. Enzymeless glucose sensor integrated with chronically implantable nerve cuff electrode for in-situ inflammation monitoring. Sens. Actuators B Chem. 2016, 222, 425–432. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Wu, F.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A.N.; Amer, M.R.; Zhou, C. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170–1178. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Shakayeva, A.K.; Munasbaeva, K.K.; Zhumazhanova, A.T.; Zdorovets, M.V.; Korolkov, I.V. Electrochemical sensors based on modified track–etched membrane for non-enzymatic glucose determination. Microchem. J. 2023, 193, 109003. [Google Scholar] [CrossRef]
- Govindaraj, M.; Srivastava, A.; Muthukumaran, M.K.; Tsai, P.-C.; Lin, Y.-C.; Raja, B.K.; Rajendran, J.; Ponnusamy, V.K.; Arockia Selvi, J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 2023, 253, 126680. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 2016, 10, 46–80. [Google Scholar] [CrossRef]
- Adhikari, B.-R.; Govindhan, M.; Chen, A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 2015, 15, 22490–22508. [Google Scholar] [CrossRef]
- Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A.J.; Xie, H.; Moussy, F.; Milne, W.I. A critical review of glucose biosensors based on carbon nanomaterials: Carbon nanotubes and graphene. Sensors 2012, 12, 5996–6022. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, Y.; Chen, Y.; Weng, B.; Li, C. Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sens. Actuators B Chem. 2017, 238, 802–808. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 2012, 709, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273–278. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, P.; Liu, Y.; Luo, H. A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal. Methods 2017, 9, 2205–2210. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Duy, L.X.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J.M. Laser-induced graphene fibers. Carbon 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Li, J.; Qu, M.; Kang, M.; Zhang, C. Nonmodified laser-induced graphene sensors for lead-ion detection. ACS Appl. Nano Mater. 2023, 6, 3599–3607. [Google Scholar] [CrossRef]
- Reyes-Loaiza, V.; De La Roche, J.; Hernandez-Renjifo, E.; Idárraga, O.; Da Silva, M.; Valencia, D.P.; Ghneim-Herrera, T.; Jaramillo-Botero, A. Laser-induced graphene electrochemical sensor for quantitative detection of phytotoxic aluminum ions (Al3+) in soils extracts. Sci. Rep. 2024, 14, 5772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, J.; Hu, C. Laser-scribed graphene sensors on nail polish with tunable composition for electrochemical detection of nitrite and glucose. Sens. Actuators B Chem. 2022, 357, 131394. [Google Scholar] [CrossRef]
- Chang, M.; Tang, R.; Zou, W.; Xian, J.; Zhang, Z.; Liu, X.; Qu, M.; Zhang, C. A High-Performance phosphate potentiometric sensor based on cobalt nanoparticles electroplated on hierarchically porous laser-induced graphene. Adv. Mater. Interfaces 2024, 11, 2301111. [Google Scholar] [CrossRef]
- Park, C.; Rhyu, H.; Jo, S.; Kang, M.H.; Kang, Y.C.; Song, W.; Lee, S.S.; Lim, J.; Myung, S. Electrochemical sensor based on laser-induced graphene and CeO2 for sensitive and selective dopamine detection. J. Electroanal. Chem. 2025, 977, 118865. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Tang, K.; Lu, Y.; Lan, M.; Gan, L.; Wang, J.; Yang, X. Preparation of laser-induced graphene modified electrode for the detection of bisphenol A in plastics. Int. J. Electrochem. Sci. 2024, 19, 100762. [Google Scholar] [CrossRef]
- Brustoloni, C.J.-M.; Soltan Khamsi, P.; Kammarchedu, V.; Ebrahimi, A. Systematic study of various functionalization steps for ultrasensitive detection of SARS-CoV-2 with direct laser-functionalized Au-LIG electrochemical sensors. ACS Appl. Mater. Interfaces 2024, 16, 49041–49052. [Google Scholar] [CrossRef]
- Song, R.; Zhang, J.; Yang, G.; Wu, Y.; Yu, J.; Zhu, H. A non-disposable electrochemical sensor based on laser-synthesized Pd/LIG nanocomposite-modified screen-printed electrodes for the detection of H2O2. Sensors 2024, 24, 2043. [Google Scholar] [CrossRef]
- Yan, W.; Yan, W.; Chen, T.; Xu, J.; Tian, Q.; Ho, D. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing. ACS Appl. Nano Mater. 2020, 3, 2545–2553. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, X.; Tang, L.; Sun, H.; Cao, Z.; Jiang, C. In-situ generation of Co-Fe bimetallic electrocatalysts on lignosulfonate-derived graphene by direct laser writing for wearable glucose biosensors. Sens. Actuators B Chem. 2025, 432, 137506. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, L.; Chen, Y.; Qiu, Z.; Meng, X.; Li, Y. Portable glucose sensing analysis based on laser-induced graphene composite electrode. RSC Adv. 2024, 14, 1034–1050. [Google Scholar] [CrossRef]
- Setti, M.; Vaughan, E.; Murray, R.; Sygellou, L.; Quinn, A.J.; Riccò, M.; Pontiroli, D.; Iacopino, D. Sustainable electrochemical sensors from cork-derived laser induced graphene: Non-enzymatic glucose detection in urine. Sens. Actuators B Chem. 2025, 430, 137352. [Google Scholar] [CrossRef]
- Shokurov, A.V.; Menon, C. Laser-induced graphene electrodes for electrochemistry education and research. J. Chem. Educ. 2023, 100, 2411–2417. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Bernalte, E.; Muñoz, R.A.A.; Banks, C.E. Electroanalytical overview: The use of laser-induced graphene sensors. Anal. Methods 2025, 17, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Behrent, A.; Griesche, C.; Sippel, P.; Baeumner, A.J. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Mikrochim. Acta 2021, 188, 159. [Google Scholar]
- Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Sci. Rep. 2016, 6, 27975. [Google Scholar] [CrossRef] [PubMed]
- Gau, V.; Ma, S.-C.; Wang, H.; Tsukuda, J.; Kibler, J.; Haake, D.A. Electrochemical molecular analysis without nucleic acid amplification. Methods 2005, 37, 73–83. [Google Scholar] [CrossRef]
- Purwidyantri, A.; Chen, C.-H.; Chen, L.-Y.; Chen, C.-C.; Luo, J.-D.; Chiou, C.-C.; Tian, Y.-C.; Lin, C.-Y.; Yang, C.-M.; Lai, H.-C.; et al. Speckled ZnO nanograss electrochemical sensor for staphylococcus epidermidis detection. J. Electrochem. Soc. 2017, 164, B205–B211. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Kaur, B.; Srivastava, R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J. Colloid Interface Sci. 2012, 370, 144–154. [Google Scholar] [CrossRef]
- Prathap, M.U.A.; Pandiyan, T.; Srivastava, R. Cu nanoparticles supported mesoporous polyaniline and its applications towards non-enzymatic sensing of glucose and electrocatalytic oxidation of methanol. J. Polym. Res. 2013, 20, 83. [Google Scholar] [CrossRef]
- Wei, H.; Sun, J.-J.; Guo, L.; Li, X.; Chen, G.-N. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem. Commun. 2009, 2842–2844. [Google Scholar] [CrossRef] [PubMed]
- Marioli, J.M.; Kuwana, T. Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 1992, 37, 1187–1197. [Google Scholar] [CrossRef]
- Beitollai, H.; Garkani Nejad, F.; Tajik, S.; Jahani, S.; Biparva, P. Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles. Int. J. Nano Dimens. 2017, 8, 197–205. [Google Scholar]
- Simon, Í.A.; Medeiros, N.G.; Garcia, K.C.; Soares, R.M.D.; Rosa, A.T.; Silva, J.A. CuO nanofibers immobilized on paraffin-impregnated graphite electrode and its application in the amperometric detection of glucose. J. Braz. Chem. Soc. 2015, 26, 1710–1717. [Google Scholar] [CrossRef]
- Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2010, 144, 220–225. [Google Scholar] [CrossRef]
- Liu, X.-W.; Pan, P.; Zhang, Z.-M.; Guo, F.; Yang, Z.-C.; Wei, J.; Wei, Z. Ordered self-assembly of screen-printed flower-like CuO and CuO/MWCNTs modified graphite electrodes and applications in non-enzymatic glucose sensor. J. Electroanal. Chem. 2016, 763, 37–44. [Google Scholar] [CrossRef]
- Pourbeyram, S.; Mehdizadeh, K. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles. J. Food Drug Anal. 2016, 24, 894–902. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Gao, Y.; Wang, Z.; Yin, R.; Xuan, F. Highly sensitive and flexible copper oxide/graphene non-enzymatic glucose sensor by laser direct writing. Adv. Sens. Res. 2023, 2, 2200067. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Chen, W.; Liu, Z. One-step laser-induced Cu-embedded graphene for non-enzymatic glucose sensing in beverages. J. Alloys Compd. 2024, 992, 174563. [Google Scholar] [CrossRef]
- Pinheiro, T.; Caetano, J.; Fortunato, E.; Sales, M.G.F.; Almeida, H.; Martins, R. One-step laser synthesis of copper nanoparticles and laser-induced graphene in a paper substrate for non-enzymatic glucose sensing. Adv. Sens. Res. 2024, 3, 2400052. [Google Scholar] [CrossRef]
bare LIG | Cu NP/LIG | bare LIGF/LIG | Cu NP/LIGF/LIG | ||
---|---|---|---|---|---|
Active surface area (cm2) | 0.197 | 0.254 | 0.372 | 0.596 | |
Diffusion coefficient (cm2/s) | 112.56 | 145.49 | 228.35 | 228.84 | |
R2 | Anodic current | 0.999 | 0.992 | 0.999 | 0.998 |
Cathodic current | 0.999 | 0.993 | 0.999 | 0.999 |
Modified Electrode | Sensitivity (µA/mM∙cm2) | LOD (µM) | Linear Range (mM) | Ref. | |
---|---|---|---|---|---|
Cu NP/GE | - | 0.4 | 0.001–0.2 | [53] | |
Cu NF/PIGE | 442.1 | 0.39 | 1–19 | [54] | |
Cu NR/GE | 371.4 | 4 | - | [55] | |
Cu NF/GE | 709.5 | 4 | 0.004–8 | ||
Cu NF/MWCNT-Graphite | 1211 | 4 | 0.004–14.5 | [56] | |
Cu NP/PGE | 1467.5 | 0.44 | - | [57] | |
CuO/LEG | 619 | 0.049 | 0–3 | [58] | |
Cu/LIG | 281.7 | 6.1 | 0.5–4 | [59] | |
Cu NP/LIG/paper | 87.6 | 14 | 0.02–1.51 | [60] | |
Cu NP/LIGF/LIG | 0° | 1438.8 | 0.124 | 0–4 | This work |
45° | 1415.7 | ||||
90° | 1402.2 | ||||
135° | 1390.5 | ||||
180° | 1422.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Pak, J.J. Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode. Sensors 2025, 25, 2341. https://doi.org/10.3390/s25072341
Kim T, Pak JJ. Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode. Sensors. 2025; 25(7):2341. https://doi.org/10.3390/s25072341
Chicago/Turabian StyleKim, Taeheon, and James Jungho Pak. 2025. "Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode" Sensors 25, no. 7: 2341. https://doi.org/10.3390/s25072341
APA StyleKim, T., & Pak, J. J. (2025). Fabrication and Characterization of a Flexible Non-Enzymatic Electrochemical Glucose Sensor Using a Cu Nanoparticle/Laser-Induced Graphene Fiber/Porous Laser-Induced Graphene Network Electrode. Sensors, 25(7), 2341. https://doi.org/10.3390/s25072341