Novel Europium-Grafted 3D Covalent Organic Framework for Selective and Sensitive Fluorescence-Enhanced Detection of Levofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of SUZ−103 and Eu@SUZ−103
2.3. Method Development for LVFX Detection Using Eu@SUZ−103
2.4. LVFX Monitoring in Serum and Urine
3. Results and Discussion
3.1. Structural Characterization of SUZ−103 and Eu@SUZ−103
3.2. Luminescent and Optical Properties of SUZ−103 and Eu@SUZ−103
3.3. Luminescent Detection of LVFX via Eu@ZUC-103
3.4. Evaluation of Selectivity in LVFX Detection
3.5. Analysis of Real Biological Samples: Human Serum and Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, Z.; Chen, H.; Wang, P.; Wang, W.; Yang, J.; Sun, J.; Chen, B.; Tian, T.; Zha, Z.; Wang, H.; et al. Phototherapy Using a Fluoroquinolone Antibiotic Drug to Suppress Tumor Migration and Proliferation and to Enhance Apoptosis. ACS Nano 2022, 16, 4917–4929. [Google Scholar] [CrossRef] [PubMed]
- Imperial, M.Z.; Nahid, P.; Phillips, P.P.J.; Davies, G.R.; Fielding, K.; Hanna, D.; Hermann, D.; Wallis, R.S.; Johnson, J.L.; Lienhardt, C. A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nat. Med. 2018, 24, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, L.; Dong, D.; Zhang, W.; Guo, Z. Coupled multimedia fate and bioaccumulation models for predicting fate of florfenicol and fluoroquinolones in water and fish organs in the seasonal ice-sealed reservoir. J. Hazard. Mater. 2023, 458, 132063. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Lu, Y.; Guo, J.; Gan, W.; Qi, S.; Yin, Z.; Zhang, M.; Sun, Z. Internal electric field-mediated sulfur vacancies-modified-In2S3/TiO2 thin-film heterojunctions as a photocatalyst for peroxymonosulfate activation: Density functional theory calculations, levofloxacin hydrochloride degradation pathways and toxicity of intermediates. Chem. Eng. J. 2022, 450, 138271. [Google Scholar]
- Fathi, A.; Gholami, M.; Motasadizadeh, H.; Malek-Khatabi, A.; Sedghi, R.; Dinarvand, R. Thermoresponsive in situ forming and self-healing double-network hydrogels as injectable dressings for silymarin/levofloxacin delivery for treatment of third-degree burn wounds. Carbohydr. Polym. 2024, 331, 121856. [Google Scholar] [CrossRef] [PubMed]
- Fox Greg, J.; Nhung Nguyen, V.; Cam Binh, N.; Hoa Nguyen, B.; Garden Frances, L.; Benedetti, A.; Ngoc Yen, P.; Cuong Nguyen, K.; MacLean Emily, L.; Yapa, H.M.; et al. Levofloxacin for the Prevention of Multidrug-Resistant Tuberculosis in Vietnam. N. Engl. J. Med. 2024, 391, 2304–2314. [Google Scholar] [PubMed]
- Teh, B.W.; Harrison, S.J.; Worth, L.J.; Thursky, K.A.; Slavin, M.A. Levofloxacin prophylaxis in patients with myeloma. Lancet Oncol. 2020, 21, e67. [Google Scholar] [CrossRef]
- Yan, P.; Liu, W.; Kong, J.; Wu, H.; Chen, Y. Prevention of catheter-related Pseudomonas aeruginosa infection by levofloxacin-impregnated catheters in vitro and in vivo. Chin. Med. J. 2014, 127, 54–58. [Google Scholar] [CrossRef]
- Thomas, P.; Sarmiento Cano, J.P.; Velez Jeves, E.C. Levofloxacin-Induced Pneumonitis in a Hispanic Female. Chest 2024, 166, A88–A89. [Google Scholar] [CrossRef]
- Wang, M.; Cetó, X.; del Valle, M. A Sensor Array Based on Molecularly Imprinted Polymers and Machine Learning for the Analysis of Fluoroquinolone Antibiotics. ACS Sens. 2022, 7, 3318–3325. [Google Scholar] [CrossRef]
- Yu, Y.; Hong, D.; Zhu, Z.; Jiang, Y. Development of a MOF-based dual-channel levofloxacin probe and its application in the detection of food and beverage. Food Chem. 2025, 465, 142110. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zheng, W.; Li, M.; Liu, W.; Zhang, Y.; Wang, Y. Fe2P/biocarbon composite derived from a phosphorus-containing biomass for levofloxacin removal through peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 130928. [Google Scholar] [CrossRef]
- Xie, H.-Y.; Wang, Z.-R.; Fu, Z.-F. Highly sensitive trivalent copper chelate–luminol chemiluminescence system for capillary electrophoresis chiral separation and determination of ofloxacin enantiomers in urine samples. J. Pharm. Anal. 2014, 4, 412–416. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xu, N.; Yang, Y.; Gao, S.; Han, Y.; Ma, Z. A novel annulated dinuclear dizinc phthalocyanine cross-linked h-BN polyamides for efficient photocatalytic levofloxacin removal from real pharmaceutical wastewater. Chem. Eng. J. 2024, 489, 151264. [Google Scholar] [CrossRef]
- Hu, X.; Sun, H.; Jiang, Y.; Xiao, X.; Liang, Y.; Lei, M.; Yang, Y.; Zhang, J.; Qin, P.; Luo, L.; et al. π-π conjugated PDI supramolecular regulating the photoluminescence of imine-COFs for sensitive smartphone visual detection of levofloxacin. Food Chem. 2024, 460, 140688. [Google Scholar] [CrossRef]
- Hu, X.L.; Gan, H.Q.; Gui, W.Z.; Yan, K.C.; Sessler, J.A.-O.; Yi, D.; Tian, H.; He, X.P. Superresolution imaging of antibiotic-induced structural disruption of bacteria enabled by photochromic glycomicelles. Proc. Natl. Acad. Sci. USA 2024, 121, e2408716121. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qin, F.; Tang, S.; Li, X.; Li, T.; Guo, G.; Gu, C.; Wang, X.; Chen, D. Construction of graphene quantum dots ratiometric fluorescent probe by intermolecular electron transfer effect for intelligent and real-time visual detection of ofloxacin and its L-isomer in daily drink. Food Chem. 2023, 411, 135514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qi, X.; Zhang, X.; Huang, Y.; Ma, Q.; Guo, X.; Wu, Y. β-Cyclodextrin/carbon dots-grafted cellulose nanofibrils hydrogel for enhanced adsorption and fluorescence detection of levofloxacin. Carbohydr. Polym. 2024, 340, 122306. [Google Scholar] [CrossRef] [PubMed]
- Al-mashriqi, H.S.; Sanga, P.; Chen, J.; Qaed, E.; Xiao, J.; Li, X.; Qiu, H. Multifunctional Eu-doped carbon dots nanoprobe for highly sensitive and selective determination of glutathione in biological fluid and cell imaging. Carbon 2024, 228, 119380. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Dou, Y.; Wang, H.; Chen, C.; Wang, X. Ratiometric fluoroprobe based on Eu-MOF@Tb3+ for detecting tetracycline hydrochloride in freshwater fish and its application in rapid visual detection. J. Hazard. Mater. 2024, 469, 134045. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Zhu, F.; Chang, Z.; Du, R.; Deng, Y.; Qi, X. Lab on the Microneedles: A Wearable Metal–organic Frameworks-Based Sensor for Visual Monitoring of Stress Hormone. ACS Nano 2024, 18, 14207–14217. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xia, M.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X. Dual-signal amplified cathodic electrochemiluminescence aptsensor based on a europium-porphyrin coordination polymer for the ultrasensitive detection of zearalenone in maize. Sens. Actuators B Chem. 2023, 382, 133532. [Google Scholar] [CrossRef]
- Wilson, B.K.; Romanova, S.; Bronich, T.K.; Prud’homme, R.K. Intestinal distribution of anionic, cationic, and neutral polymer-stabilized nanocarriers measured with a lanthanide (europium) tracer assay. J. Control Release 2024, 376, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jin, Q.; Ren, Y.; Wang, Y.; Zhu, D.; Wang, J. Ratiometric fluorescent sensor based on europium (III)-functionalized covalent organic framework for selective and sensitive detection of tetracycline. Chem. Eng. J. 2023, 465, 142819. [Google Scholar] [CrossRef]
- Cui, K.; Tang, Q.; Zhao, T.; Qiao, M.; Peng, H.; Ding, L.; Fang, Y. Bifunctional mesoporous silica nanoparticles with Europium(III) and pyrene for visual detection and discriminative identification of six fluoroquinolone antibiotics. Sens. Actuators B Chem. 2025, 427, 137162. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.-L.; Gao, Y.; Duan, L.-Y.; Yang, W.; Huang, X.; Hong, Y.; Hong, J.; Yuan, L.; Lu, L. Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin. Chin Chem Lett. 2024, 110436. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, Y.; Zhou, X.; Gui, B.; Wang, W.; Jiang, W.; Zhang, Y.-B.; Sun, J.; Wang, C. Ultrahigh–surface area covalent organic frameworks for methane adsorption. Science 2024, 386, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ma, T.; Zhang, H.; Chheda, S.; Li, H.; Wang, K.; Ehrling, S.; Giovine, R.; Li, C.; Alawadhi, A.H.; et al. Carbon dioxide capture from open air using covalent organic frameworks. Nature 2024, 635, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Llauradó-Capdevila, G.; Veciana, A.; Guarducci, M.A.; Mayoral, A.; Pons, R.; Hertle, L.; Ye, H.; Mao, M.; Sevim, S.; Rodríguez-San-Miguel, D.; et al. Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. Adv. Mater. 2024, 36, 2306345. [Google Scholar] [CrossRef] [PubMed]
- Luan, B.-B.; Chu, X.; Wang, Y.; Qiao, X.; Jiang, Y.; Zhang, F.-M. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting. Adv. Mater. 2024, 36, 2412653. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, Z.; Guan, X.; Li, H.; Liu, Y.; Zhang, M.; Tang, B.; Valtchev, V.; Yan, Y.; Qiu, S. Three-Dimensional sp2 Carbon-Linked Covalent Organic Frameworks as a Drug Carrier Combined with Fluorescence Imaging. Chin. J. Chem. 2022, 40, 2081–2088. [Google Scholar] [CrossRef]
- Liao, L.; Guan, X.; Zheng, H.; Zhang, Z.; Liu, Y.; Li, H.; Zhu, L.; Qiu, S.; Yao, X.; Fang, Q. Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units. Chem. Sci. 2022, 13, 9305–9309. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liu, J.-Y.; Zhang, G.-H.; Zhu, Q.-H.; Wang, S.-L.; Qin, S.; He, L.; Tao, G.-H. Boost of Gas Adsorption Kinetics of Covalent Organic Frameworks via Ionic Liquid Solution Process. Small 2023, 19, 2302570. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Wang, L.; Wang, Q.; Zhang, Q.; Cui, F.; Jiang, G. Synthesis of S-type heterostructure π-COF for photocatalytic tetracycline degradation. Chem. Eng. J. 2024, 479, 147534. [Google Scholar] [CrossRef]
- Tian, X.; Cao, L.; Zhang, K.; Zhang, R.; Li, X.; Yin, C.; Wang, S. Molecular Weaving Towards Flexible Covalent Organic Framework Membranes for Efficient Gas Separations. Angew. Chem. Int. Ed. 2024, 137, e202416864. [Google Scholar] [CrossRef]
- Wang, M.; Qin, Y.; Li, Z.; Song, Z.; Wan, Y.; Du, J.; Song, M.; Li, S.; Zhang, S.; Zhao, M. Covalent organic frameworks for detection of ions. Trends Anal. Chem. 2024, 172, 117589. [Google Scholar] [CrossRef]
- Zhang, H.; Geng, Y.; Huang, J.; Wang, Z.; Du, K.; Li, H. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy Environ. Sci. 2023, 16, 889–951. [Google Scholar] [CrossRef]
- Yang, L.; Lu, H.; Zhang, T.; Zhou, S.; Yang, X.; Luo, Z.; Huang, W.; Shen, Y.; Wang, G.; Liu, Y.; et al. Novel water-dispersible lanthanide-grafted covalent organic framework nanoplates for luminescent levofloxacin sensing and visual pH detection. Dye. Pigm. 2021, 196, 109818. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Wu, Y.; Liu, J.; Shuai, Q.; Huang, L.; Hu, Z.; Yamauchi, Y. Advances in reticular materials for sustainable rare earth element recovery. Coord. Chem Rev. 2025, 522, 216199. [Google Scholar] [CrossRef]
- Pan, Q.; Abdellah, M.; Cao, Y.; Lin, W.; Liu, Y.; Meng, J.; Zhou, Q.; Zhao, Q.; Yan, X.; Li, Z.; et al. Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. Nat. Mater. 2022, 13, 845. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Zhao, J.; Tang, J.; Zhao, Y.; Liu, J. Lanthanide-grafted covalent organic framework as a colorimetric and luminescence dual-mode nanoprobe for tetracycline detection. Sens. Actuators B Chem. 2024, 411, 135724. [Google Scholar] [CrossRef]
- Xue, R.; Liu, Y.-S.; Yang, W.; Yang, G.-Y. Covalent organic frameworks decorated by rare earth ions. Coord. Chem. Rev. 2024, 501, 215577. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Zou, Y.; Tian, M.; Wang, L.; Li, L.; Wang, M.; Tao, Y.; Wang, J.; Wen, Z.; et al. Covalent assembly synthesis of covalent organic framework and MXene based composite for the adsorption of fluoroquinolones. J. Environ. Chem. Eng. 2023, 11, 110975. [Google Scholar] [CrossRef]
- Cheng, Y.; Xin, J.; Xiao, L.; Wang, X.; Zhou, X.; Li, D.; Gui, B.; Sun, J.; Wang, C. A Fluorescent Three-Dimensional Covalent Organic Framework Formed by the Entanglement of Two-Dimensional Sheets. J. Am. Chem. Soc. 2023, 145, 18737–18741. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Wang, T.; Zheng, H.; Lin, E.; Zheng, Y.; Hao, L.; Wang, T.; Chen, Y.; Cheng, P.; Yu, K.; et al. Bottom-Up Synthesis of Covalent Organic Frameworks with Quasi-Three-Dimensional Integrated Architecture via Interlayer Cross-Linking. J. Am. Chem. Soc. 2023, 145, 6507–6515. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Lv, J.; Wang, Z.; Suo, J.; Ren, J.; Liu, J.; Liu, D.; Wang, Y.; Valtchev, V.; et al. Topological Isomerism in Three-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2023, 145, 9679–9685. [Google Scholar] [CrossRef]
- Wang, X.; Gao, F.; Kang, Z.; Fan, W.; Sun, D. Reticular chemistry within three-dimensional covalent organic frameworks for multiple applications. J. Mater. Chem. A. 2023, 11, 20368–20382. [Google Scholar] [CrossRef]
- Xu, X.; Cui, Q.; Chen, H.; Huang, N. Carborane-Based Three-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2023, 145, 24202–24209. [Google Scholar] [CrossRef]
- Xue, S.; Ma, X.; Wang, Y.; Duan, G.; Zhang, C.; Liu, K.; Jiang, S. Advanced development of three-dimensional covalent organic frameworks: Valency design, functionalization, and applications. Coord. Chem. Rev. 2024, 504, 215659. [Google Scholar] [CrossRef]
- Jin, F.; Lin, E.; Wang, T.; Geng, S.; Wang, T.; Liu, W.; Xiong, F.; Wang, Z.; Chen, Y.; Cheng, P.; et al. Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. J. Am. Chem. Soc. 2022, 144, 5643–5652. [Google Scholar] [CrossRef] [PubMed]
- Perl, D.; Lee, S.J.; Ferguson, A.; Jameson, G.B.; Telfer, S.G. Hetero-interpenetrated metal–organic frameworks. Nat. Chem. 2023, 15, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Irie, T.; Wen, D.; Mabuchi, H.; Sasaki, K.; Nozaki, M.; Tomioka, R.; Zhu, W.; Das, S.; Ben, T.; et al. Highly Selective Separation of Benzene/Cyclohexane by Three-Dimensional Covalent Organic Framework with 8,8-Connected bcu Net Topology. ACS Mater. Lett. 2024, 6, 3063–3070. [Google Scholar]
- Materials Studio, Version 7.0; Accelrys Inc.: San Diego, CA, USA, 2016.
- Wang, R.; Zhang, Z.; Zhou, H.; Yu, M.; Liao, L.; Wang, Y.; Wan, S.; Lu, H.; Xing, W.; Valtchev, V.; et al. Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. Angew. Chem. Int. Ed. 2024, 63, e202410417. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Wang, R.; Zhang, Z.; Zhang, J.; Huang, S.; Xie, W.; Wang, Y.; Xue, M.; Fang, Q.; Qiu, S. Three-dimensional porphyrin-based covalent organic frameworks as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Inorg. Chem. Front. 2025, 12, 1881–1889. [Google Scholar] [CrossRef]
- Mercier, F.; Alliot, C.; Bion, L.; Thromat, N.; Toulhoat, P. XPS study of Eu (III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy. J. Electron. Spectros Relat. Phenom. 2006, 105, 21–26. [Google Scholar]
- Ji, K.; Dai, H.; Deng, J.; Jiang, H.; Zhang, L.; Zhang, H.; Cao, Y. Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1-xSrxFeO3. Chem. Eng. J. 2013, 214, 262–271. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Fang, Q.; Qiu, S. Advancements and applications of three-dimensional covalent organic frameworks. Chem. Synth. 2024, 4, 29. [Google Scholar]
- Wang, R.; Zhang, Z.; Suo, J.; Liao, L.; Li, L.; Yu, Z.; Zhang, H.; Valtchev, V.; Qiu, S.; Fang, Q. Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic-π interactions. Chem. Eng. J. 2023, 478, 147403. [Google Scholar]
- Wang, R.; Zhou, H.; Pan, Q.; Su, Z.; Qiu, S.; Fang, Q.; Lu, H. Ionic covalent organic framework-MXene heterojunction constructed by electrostatic interaction for stable electrocatalytic hydrogen generation. Chem. Eng. J. 2024, 499, 156033. [Google Scholar]
- Zhou, H.; Li, K.; Pan, Q.; Su, Z.; Wang, R. Application of Nanocomposites in Covalent Organic Framework-Based Electro catalysts. Nanomaterials 2024, 14, 1907. [Google Scholar] [PubMed]
- Hao, J.; Niu, D.; Gu, J.; Lin, S.; Li, Y.; Shi, J. Structure engineering of a lanthanide-based metal–organic framework for the regulation of dynamic ranges and sensitivities for pheochromocytoma diagnosis. Adv. Mater. 2020, 32, 2000791. [Google Scholar] [CrossRef] [PubMed]
- Cortecchia, D.; Mróz, W.; Folpini, G.; Borzda, T.; Leoncino, L.; Alvarado-Leanos, A.L.; Petrozza, A. Layered perovskite doping with Eu3+ and β-diketonate Eu3+ complex. Chem. Mater. 2021, 33, 2289–2297. [Google Scholar] [CrossRef] [PubMed]
- Lutoshkin, M.A.; Petrov, A.I.; Malyar, Y.N.; Kazachenko, A.S. Interaction of rare-earth metals and some perfluorinated β-diketones. Inorg. Chem. 2021, 60, 3291–3304. [Google Scholar] [CrossRef] [PubMed]
- Abet, V. Inducing Social Self-Sorting in Organic Cages to Tune The Shape of The Internal Cavity. Angew. Chem. Int. Ed. 2020, 59, 16755–16763. [Google Scholar]
- Gupta, G.; Iqbal, P.; Yin, F.; Liu, J.; Palmer, R.; Sharma, S.; Leung, K.; Mendes, P.M. Pt Diffusion Dynamics for the Formation Cr-Pt Core-Shell Nanoparticles. Langmuir 2015, 31, 6917–6923. [Google Scholar] [CrossRef]
- Albrecht, M.; Janser, l.; Lutzen, A.; Hapke, M. 5,5’ -Diamino-2,2’ -bipyridine: A Versatile Building Block for the Synthesis of Bipyridine/Catechol Ligands That Form Homo- and Heteronuclear Helicates. Chem. Eur. J. 2005, 11, 5742–5748. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Perman, J.; Nguyen, N.; Ma, S. Flexibility Matters: Cooperative Active Sites in Covalent Organic Framework and Threaded Ionic Polymer. J. Am. Chem. Soc. 2016, 138, 15790–15796. [Google Scholar] [CrossRef]
- Debruyne, M.; Borgmans, S.; Radhakrishnan, S.; Breynaert, E.; Vrielinck, H.; Leus, K.; Laemont, A.; Vos, J.; Rawat, K.; Vanlommel, S.; et al. Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization. ACS Appl. Mater. 2023, 15, 35092–35106. [Google Scholar] [CrossRef]
- Liang, X.; Liu, H.; Du, Y.; Li, W.; Wang, M.; Ge, B.; Zhao, L. Terbium functionalized covalent organic framework for selective and sensitive detection of LVX based on fluorescence enhancement. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125429. [Google Scholar] [CrossRef]
- Wang, J.; Lian, X.; Yan, B. Eu3+-functionalized covalent organic framework hybrid material as a sensitive turn-on fluorescent switch for levofloxacin monitoring in serum and urine. Inorg. Chem. 2019, 58, 9956–9963. [Google Scholar]
- Salem, A.; Mossa, H. Method validation and determinations of levofloxacin, metronidazole and sulfamethoxazole in an aqueous pharmaceutical, urine and blood plasma samples using quantitative nuclear magnetic resonance spectrometry. Talanta 2012, 88, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Fouladgar, M.; Samimi, R.; Fathy, Z.; Hassanpour, P. Fabrication of MWCNT-nickel MOF modified glassy carbon electrode for voltammetric determination of levofloxacin. J. Solid State Electrochem. 2024, 29, 341–349. [Google Scholar] [CrossRef]
- Veríssimo de Oliveira, W.B.; Couto da Silva, G.; Oliveira, R.S.; Henrique de Souza Leite Rocha, P.; Cunha de Souza, C.; Costa Matos, M.A.; Lisboa, T.P.; Matos, R.C. A cost-effective method for the sensitive detection of levofloxacin using a 3D composite electrode composed of nail polish, graphite and aluminium oxide. Anal. Methods 2024, 16, 6011–6019. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, J.; Yan, K.; Tin, C.-C.; Zhang, J. Synthesis of PDDA Functionalized Reduced Graphene Oxide Decorated with Gold Nanoparticles and Its Electrochemical Response toward Levofloxacin. J. Electrochem. Soc. 2015, 162, H164. [Google Scholar] [CrossRef]
- Salem, H. Spectrofluorimetric, Atomic Absorption Spectrometric and Spectrophotometric Determination of Some Fluoroquinolones. Am. J. Appl. Sci. 2005, 2, 719–729. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, C.; Qiu, Z.; Zhang, Z.; Lin, X.; Huang, S.; Zhang, J.; Wu, J.; Liao, L.; Wang, R. Novel Europium-Grafted 3D Covalent Organic Framework for Selective and Sensitive Fluorescence-Enhanced Detection of Levofloxacin. Sensors 2025, 25, 2304. https://doi.org/10.3390/s25072304
Zhao J, Zhang C, Qiu Z, Zhang Z, Lin X, Huang S, Zhang J, Wu J, Liao L, Wang R. Novel Europium-Grafted 3D Covalent Organic Framework for Selective and Sensitive Fluorescence-Enhanced Detection of Levofloxacin. Sensors. 2025; 25(7):2304. https://doi.org/10.3390/s25072304
Chicago/Turabian StyleZhao, Junyi, Chao Zhang, Zhijie Qiu, Zerong Zhang, Xiaorou Lin, Shibin Huang, Jianfeng Zhang, Jingpeng Wu, Li Liao, and Rui Wang. 2025. "Novel Europium-Grafted 3D Covalent Organic Framework for Selective and Sensitive Fluorescence-Enhanced Detection of Levofloxacin" Sensors 25, no. 7: 2304. https://doi.org/10.3390/s25072304
APA StyleZhao, J., Zhang, C., Qiu, Z., Zhang, Z., Lin, X., Huang, S., Zhang, J., Wu, J., Liao, L., & Wang, R. (2025). Novel Europium-Grafted 3D Covalent Organic Framework for Selective and Sensitive Fluorescence-Enhanced Detection of Levofloxacin. Sensors, 25(7), 2304. https://doi.org/10.3390/s25072304