The Riemannian Means Field Classifier for EEG-Based BCI Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing, Processing, and Feature Extraction
2.1.1. ADCSP
2.1.2. Robust Power Mean Estimation (RPME)
2.1.3. Classification Pipelines
2.2. Data
2.3. Statistical Analysis
- -
- -
- The Wilcoxon one-sided signed-rank test, which basically is equivalent to a permutation test performed on the ranked data, if the number of subjects ≥ 20.
3. Results
3.1. Motor Imagery
3.2. P300 ERPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S.; Moreau, T. The largest EEG-based BCI reproducibility study for open science: The MOABB benchmark. arXiv 2024, arXiv:2404.15319. [Google Scholar] [CrossRef]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed]
- Levi-Civita, T. Lezioni Di Calcolo Differenziale Assoluto; Nicola Zanichelli Editore: Bologna, Italy, 1925. [Google Scholar]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Bio-Med. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef]
- Congedo, M. EEG Source Analysis. Habilitation Thesis, Université de Grenoble, Saint-Martin-d’Hères, France, 2013. Available online: https://tel.archives-ouvertes.fr/tel-00880483 (accessed on 1 February 2025).
- Carrara, I. Advanced Methods for BCI-EEG Processing for Improved Classification Performance and Reproducibility. Phdthesis, Université Côte d’Azur, 2024. Available online: https://inria.hal.science/tel-04797267 (accessed on 12 February 2025).
- Congedo, M.; Barachant, A.; Bhatia, R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Comput. Interfaces 2017, 4, 155–174. [Google Scholar] [CrossRef]
- Yger, F.; Berar, M.; Lotte, F. Riemannian Approaches in Brain-Computer Interfaces: A Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1753–1762. [Google Scholar] [CrossRef]
- Korczowski, L.; Congedo, M.; Jutten, C. Single-trial classification of multi-user P300-based brain-computer interface using riemannian geometry. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1769–1772. [Google Scholar]
- Mayaud, L.; Cabanilles, S.; Van Langhenhove, A.; Congedo, M.; Barachant, A.; Pouplin, S.; Filipe, S.; Pétégnief, L.; Rochecouste, O.; Azabou, E.; et al. Brain-computer interface for the communication of acute patients: A feasibility study and a randomized controlled trial comparing performance with healthy participants and a traditional assistive device. Brain Comput. Interfaces 2016, 3, 197–215. [Google Scholar] [CrossRef]
- Korczowski, L.; Ostaschenko, E.; Andreev, A.; Cattan, G.; Rodrigues, P.L.C.; Gautheret, V.; Congedo, M. Brain Invaders Calibration-Less P300-Based BCI Using Dry EEG Electrodes Dataset (bi2014a); GIPSA-lab, Research Report, juillet; 2019. Available online: https://hal.science/hal-02171575 (accessed on 1 February 2025).
- Andreev, A.; Barachant, A.; Lotte, F.; Congedo, M. Recreational Applications of OpenViBE: Brain Invaders and Use-the-Force; chap. 14; John Wiley, Sons: Hoboken, NJ, USA, 2016; Available online: https://hal.archives-ouvertes.fr/hal-01366873/document (accessed on 1 February 2025).
- Moakher, M. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef]
- Lim, Y.; Pálfia, M. Matrix power means and the Karcher mean. J. Funct. Anal. 2012, 262, 1498–1514. [Google Scholar] [CrossRef]
- Pálfia, M. Operator means of probability measures and generalized Karcher equations. arXiv 2016, arXiv:1601.06777. [Google Scholar] [CrossRef]
- Lawson, J.; Lim, Y. Weighted means and Karcher equations of positive operators. Proc. Natl. Acad. Sci. USA 2014, 110, 15626–15632. [Google Scholar] [CrossRef]
- Lawson, J.; Lim, Y. Karcher means and Karcher equations of positive definite operators. Trans. Amer. Math. Soc. Ser. B 2014, 1, 1–22. [Google Scholar] [CrossRef]
- Congedo, M.; Barachant, A.; Bhatia, R. Fixed Point Algorithms for Estimating Power Means of Positive Definite Matrices. IEEE Trans. Signal Process. 2017, 65, 2211–2220. [Google Scholar] [CrossRef]
- Congedo, M.; Rodrigues, P.L.C.; Jutten, C. The Riemannian Minimum Distance to Means Field Classifier. In Proceedings of the BCI 2019—8th International Brain-Computer Interface Conference, Graz, Austria, 16–20 September 2019. [Google Scholar] [CrossRef]
- Bruno, A.; Igor, C.; Pierre, G.; Sara, S.; Pedro, R.; Jan, S.; Divyesh, N.; Erik, B.; Barthelemy, Q.; Tibor, S.R.; et al. Mother of All BCI Benchmarks, version v1.0.0; Zenodo: Genève, Switzerland, 2023. [CrossRef]
- Jayaram, V.; Barachant, A. MOABB: Trustworthy algorithm benchmarking for BCIs. J. Neural Eng. 2018, 15, 066011. [Google Scholar] [CrossRef]
- Barachant, A.; Barthélemy, Q.; King, J.-R.; Gramfort, A.; Chevallier, S.; Rodrigues, P.L.C.; Olivetti, E.; Goncharenko, V.; Berg, G.W.v.; Reguig, G.; et al. pyRiemann, version v0.8; Zenodo: Genève, Switzerland, 2024. [CrossRef]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K. Optimizing Spatial filters for Robust EEG Single-Trial Analysis. IEEE Signal Process. Mag. 2008, 25, 41–56. [Google Scholar] [CrossRef]
- Rivet, B.; Souloumiac, A.; Attina, V.; Gibert, G. Xdawn algorithm to enhance evoked potentials: Application to brain-computer interface. IEEE Trans. Biomed. Eng. 2009, 56, 2035–2043. [Google Scholar] [CrossRef]
- Pham, T. Joint Approximate Diagonalization of Positive Definite Hermitian Matrices. SIAM J. Matrix Anal. Appl. 2001, 22, 1136–1152. [Google Scholar] [CrossRef]
- Barthélemy, Q.; Mayaud, L.; Ojeda, D.; Congedo, M. The Riemannian Potato Field: A Tool for Online Signal Quality Index of EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 244. [Google Scholar] [CrossRef]
- Tangermann, M.; Müller, K.R.; Aertsen, A.; Birbaumer, N.; Braun, C.; Brunner, C.; Leeb, R.; Mehring, C.; Miller, K.J.; Müller-Putz, G.R.; et al. Review of the BCI Competition IV. Front. Neurosci. 2012, 6, 55. [Google Scholar] [CrossRef]
- Leeb, R.; Lee, F.; Keinrath, C.; Scherer, R.; Bischof, H.; Pfurtscheller, G. Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural. Syst. Rehabil. Eng. 2007, 15, 473–482. [Google Scholar] [CrossRef]
- Cho, H.; Ahn, M.; Ahn, S.; Kwon, M.; Jun, S.C. EEG datasets for motor imagery brain-computer interface. Gigascience 2017, 6, gix034. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M.; Liefhold, C.; Gramann, K.; Buss, M. Beamforming in noninvasive brain-computer interfaces. IEEE Trans. Biomed. Eng. 2009, 56, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kwon, O.Y.; Kim, Y.J.; Kim, H.K.; Lee, Y.E.; Williamson, J.; Fazli, S.; Lee, S.W. EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy. Gigascience 2019, 8, giz002. [Google Scholar] [CrossRef]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- Shin, J.; von Lühmann, A.; Blankertz, B.; Kim, D.W.; Jeong, J.; Hwang, H.J.; Müller, K.R. Open Access Dataset for EEG+NIRS Single-Trial Classification. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 1735–1745. [Google Scholar] [CrossRef]
- Yi, W.; Qiu, S.; Wang, K.; Qi, H.; Zhang, L.; Zhou, P.; He, F.; Ming, D. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS ONE 2014, 9, e114853. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wu, X.; Lv, Z.; Zhang, L.; Guo, X. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface. PLoS ONE 2016, 11, e0162657. [Google Scholar] [CrossRef]
- Riccio, A.; Simione, L.; Schettini, F.; Pizzimenti, A.; Inghilleri, M.; Belardinelli, M.O.; Mattia, D.; Cincotti, F. Attention and P300-based BCI performance in people with amyotrophic lateral sclerosis. Front. Hum. Neurosci. 2013, 7, 732. [Google Scholar] [CrossRef]
- Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F. Influence of P300 latency jitter on event related potential-based brain-computer interface performance. J. Neural Eng. 2014, 11, 035008. [Google Scholar] [CrossRef]
- Guger, C.; Daban, S.; Sellers, E.; Holzner, C.; Krausz, G.; Carabalona, R.; Gramatica, F.; Edlinger, G. How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci. Lett. 2009, 462, 94–98. [Google Scholar] [CrossRef]
- Van Veen, G.F.P.; Barachant, A.; Andreev, A.; Cattan, G.; Rodrigues, P.L.C.; Congedo, M. Building Brain Invaders: EEG Data of An Experimental Validation. GIPSA-Lab, Research Report 1, mai 2019. Available online: https://hal.archives-ouvertes.fr/hal-02126068 (accessed on 1 February 2025).
- Vaineau, E.; Barachant, A.; Andreev, A.; Rodrigues, P.C.; Cattan, G.; Congedo, M. Brain Invaders Adaptive Versus Non-Adaptive P300 Brain-Computer Interface Dataset. GIPSA-LAB, Research Report 1, avril 2019. Available online: https://hal.archives-ouvertes.fr/hal-02103098 (accessed on 2 July 2019).
- Korczowski, L.; Ostaschenko, E.; Andreev, A.; Cattan, G.; Rodrigues, P.L.C.; Gautheret, V.; Congedo, M. Brain Invaders Solo Versus Collaboration: Multi-User P300-Based Brain-Computer Interface Dataset (bi2014b); GIPSA-lab, Research Report, juillet; 2019. Available online: https://hal.science/hal-02173958/ (accessed on 1 February 2025).
- Korczowski, L.; Cederhout, M.; Andreev, A.; Cattan, G.; Rodrigues, P.L.C.; Gautheret, V.; Congedo, M. Brain Invaders Calibration-less P300-Based BCI with Modulation of Flash Duration Dataset (bi2015a); GIPSA-lab, Research Report, juillet; 2019. Available online: https://hal.science/hal-02172347 (accessed on 1 February 2025).
- Korczowski, L.; Cederhout, M.; Andreev, A.; Cattan, G.; Rodrigues, P.L.; Gautheret, V.; Congedo, M. Brain Invaders Cooperative Versus Competitive: Multi-User P300-based Brain-Computer Interface Dataset (bi2015b); GIPSA-lab, Research Report, juillet; 2019. Available online: https://hal.science/hal-02173913v1 (accessed on 1 February 2025).
- Cattan, G.; Andreev, A.; Rodrigues, P.; Congedo, M. Dataset of an EEG-Based BCI Experiment in Virtual Reality and on a Personal Computer; GIPSA-lab; IHMTEK, Research Report, 2019. Available online: https://hal.science/hal-02078533v3 (accessed on 1 February 2025).
- Edgington, E.S. Randomization Tests, 3rd ed.; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Huson, L.W. Multivariate Permutation Tests: With Applications in Biostatistics. J. R. Stat. Soc. Ser. D Stat. 2003, 52, 247. [Google Scholar] [CrossRef]
- Congedo, M.; Afsari, B.; Barachant, A.; Moakher, M. Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices. PLoS ONE 2015, 10, e0121423. [Google Scholar] [CrossRef]
Name | Number of Channels | Number of Sessions | Number of Subjects |
---|---|---|---|
BNCI2014-001 [28] | 22 | 2 | 9 |
BNCI2014-004 [29] | 3 | 5 | 9 |
Cho 2017 [30] | 64 | 1 | 52 |
Grosse Wentrup 2009 [31] | 128 | 1 | 10 |
Lee2019 MI [32] | 62 | 2 | 54 |
Physionet Motor Imagery [33] | 64 | 1 | 109 |
Schirrmeister 2017 [34] | 128 | 1 | 14 |
Shin 2017A [35] | 30 | 3 | 29 |
Weibo 2014 [36] | 60 | 1 | 10 |
Zhou 2016 [37] | 14 | 3 | 4 |
Name | Number of Channels | Number of Sessions | Number of Subjects |
---|---|---|---|
BNCI2014-008 [38] | 8 | 1 | 8 |
BNCI2014-009 [39] | 16 | 3 | 10 |
BNCI2015-003 [40] | 8 | 1 | 10 |
Brain Invaders 2012 [41] | 16 | 2 | 25 |
Brain Invaders 2013a [42] | 16 | 1/8 | 24 |
Brain Invaders 2014a [12] | 16 | 3 | 64 |
Brain Invaders 2014b [43] | 32 | 3 | 38 |
Brain Invaders 2015a [44] | 32 | 3 | 43 |
Brain Invaders 2015b [45] | 32 | 1 | 44 |
Cattan 2019 VR [46] | 16 | 2 | 21 |
Pipeline | Mean AUC-ROC | StD AUC-ROC | Mean Time |
---|---|---|---|
ADCSP + MDM | 0.685 | 0.187 | 0.15 |
ADCSP + MDMF | 0.699 | 0.189 | 0.188 |
ADCSP + MF | 0.765 | 0.18 | 0.186 |
ADCSP + MF_RPME | 0.766 | 0.177 | 0.247 |
ADCSP + TS + LR | 0.757 | 0.189 | 0.143 |
CSP + MF | 0.728 | 0.187 | 0.149 |
MDM | 0.655 | 0.185 | 0.251 |
MDMF | 0.668 | 0.189 | 2.884 |
MF | 0.756 | 0.175 | 2.58 |
TS + LR | 0.763 | 0.188 | 0.264 |
Mean | 0.724 | 0.185 | - |
StD | 0.044 | 0.005 | - |
Pipeline Database | ADCSP + MDM | ADCSP + MDMF | ADCSP + MF | ADCSP + TS + LR |
---|---|---|---|---|
BNCI2014-001 | 0.821 | 0.833 | 0.856 | 0.862 |
BNCI2014-004 | 0.777 | 0.783 | 0.796 | 0.801 |
Cho2017 | 0.672 | 0.689 | 0.737 | 0.745 |
GrosseW.2009 | 0.74 | 0.765 | 0.857 | 0.864 |
Lee2019-MI | 0.728 | 0.747 | 0.822 | 0.826 |
PhysionetMI | 0.592 | 0.599 | 0.682 | 0.66 |
Schirrm.2017 | 0.756 | 0.78 | 0.867 | 0.883 |
Shin2017A | 0.64 | 0.655 | 0.722 | 0.692 |
Weibo2014 | 0.65 | 0.677 | 0.816 | 0.83 |
Zhou2016 | 0.906 | 0.908 | 0.931 | 0.941 |
Mean | 0.728 | 0.744 | 0.809 | 0.81 |
StD | 0.094 | 0.091 | 0.076 | 0.088 |
Pipeline | MeanAUC ROC | StDAUC-ROC | Mean Time |
---|---|---|---|
MDM | 0.879 | 0.097 | 0.178 |
MDMF | 0.879 | 0.095 | 1.064 |
MF | 0.89 | 0.088 | 0.955 |
MF_RPME | 0.893 | 0.086 | 2.823 |
TS + LR | 0.898 | 0.084 | 0.181 |
Mean | 0.888 | 0.09 | - |
StD | 0.009 | 0.006 | - |
Pipeline Dataset | Xdawn + MDM | Xdawn + MDMF | Xdawn + MF | Xdawn + TS + LR |
---|---|---|---|---|
BNCI2014-008 | 0.776 | 0.797 | 0.831 | 0.858 |
BNCI2014-009 | 0.92 | 0.926 | 0.931 | 0.93 |
BNCI2015-003 | 0.831 | 0.829 | 0.834 | 0.838 |
BrainInv.2012 | 0.882 | 0.883 | 0.901 | 0.907 |
BrainInv.2013a | 0.91 | 0.914 | 0.922 | 0.922 |
BrainInv.2014a | 0.809 | 0.807 | 0.834 | 0.857 |
BrainInv.2014b | 0.916 | 0.916 | 0.914 | 0.913 |
BrainInv.2015a | 0.926 | 0.923 | 0.925 | 0.927 |
BrainInv.2015b | 0.835 | 0.834 | 0.839 | 0.843 |
Cattan2019-VR | 0.899 | 0.901 | 0.913 | 0.913 |
Mean | 0.87 | 0.873 | 0.884 | 0.891 |
StD | 0.053 | 0.051 | 0.044 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreev, A.; Cattan, G.; Congedo, M. The Riemannian Means Field Classifier for EEG-Based BCI Data. Sensors 2025, 25, 2305. https://doi.org/10.3390/s25072305
Andreev A, Cattan G, Congedo M. The Riemannian Means Field Classifier for EEG-Based BCI Data. Sensors. 2025; 25(7):2305. https://doi.org/10.3390/s25072305
Chicago/Turabian StyleAndreev, Anton, Gregoire Cattan, and Marco Congedo. 2025. "The Riemannian Means Field Classifier for EEG-Based BCI Data" Sensors 25, no. 7: 2305. https://doi.org/10.3390/s25072305
APA StyleAndreev, A., Cattan, G., & Congedo, M. (2025). The Riemannian Means Field Classifier for EEG-Based BCI Data. Sensors, 25(7), 2305. https://doi.org/10.3390/s25072305