Profile of 50 m Sprinting: The Influence of Carbon-Plated Spikes on Maximum-Velocity Performance
Abstract
:Highlights
- The 2021 Tokyo Olympics Games ended with fantastic sprints and hurdles results (world record in the 400 m hurdles). Many were concerned about whether the results were influenced by athletes’ use of new carbon-plated spikes.
- This study compares the effectiveness of classic carbon-plated fiber spikes in improving maximum sprinting speed. The analysis concerns the variability of sprinting kinematic parameters.
- The four 50 m full-out sprints did not show significant differences between the kinematic parameters considering the performance of classic Nike and carbon-plated Nike ZoomX Flymax spikes. This means that in maximum speed training, the effectiveness of both spikes is the same.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Equipment: Sprinting Spikes
2.4. Experimental Session
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions and Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mackala, K.; Mero, A. A kinematics analysis of three best 100 m performances ever. J. Human Kinetics 2013, 36, 149–160. [Google Scholar]
- Bissas, A.; Walker, J.; Tucker, C.; Paradisis, G.; Merlino, S. Men’s 100 m-2017 IAAF World Championships Biomechanical Report; World Athletics; Leeds Beckett University: Leeds, UK, 2017. [Google Scholar]
- Slawinski, J.; Termoz, N.; Rabita, G.; Guilhem, G.; Dorel, S.; Morin, J.B.; Samozino, P. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand. J. Med. Sci. Sports 2017, 27, 45–54. [Google Scholar]
- Seidl, T.; Russomanno, T.G.; Stöckl, M.; Lames, M. Assessment of Sprint Parameters in Top Speed Interval in 100 m Sprint—A Pilot Study Under Field Conditions. Front. Sports Act. Living 2021, 3, 689341. [Google Scholar]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Profiling elite male 100-m sprint performance: The role of maximum velocity and relative acceleration. J. Sport Health Sci. 2022, 11, 75–84. [Google Scholar] [PubMed]
- Zouhal, H.; Jabbour, G.; Jacob, C.; Duvigneau, D.; Botcazou, M.; Abderrahaman, A.B.; Prioux, J.; Moussa, E. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running. J. Strength Cond. Res. 2010, 24, 2309–2315. [Google Scholar] [CrossRef]
- Vazel, P. Speed Reserve in the 400 m. Special Report. 16p. Available online: http://ucoach.com/articles/detail/speed-reserve-in-the-400m (accessed on 7 March 2022).
- Yamamoto. Analysis of the major men and women’s 400 m races of 2016. Bull. Stud. Athl. JAAF 2016, 12, 98–103. [Google Scholar]
- Yousif, H.A.; Norasmadi, A.R.; Bin Salleh, A.F.; Zakaria, A.; Alfarhan, K.A. Assessment of muscles fatigue during 400-meters running strategies based on the surface EMG signals. J. Biomim. Biomater. Biomed. Eng. 2019, 42, 1–13. [Google Scholar]
- Young, M.; Choice, C. Maximal velocity sprint mechanics. Track Coach. 2007, 179, 5723–5730. [Google Scholar]
- Plevnik, M.; Vučetić, V.; Sporiš, G.; Fiorentini, F.; Milanović, Z.; Miškulin, M. Physiological Responses in Male and Female 400m Sprinters. Croat. J. Educ: Hrvat. Časopis Za Odgoj. I Obraz. 2013, 15, 93–109. [Google Scholar]
- Haugen, T.; Buchheit, M. Sprint running performance monitoring: Methodological and practical considerations. Sports Med. 2016, 46, 641–656. [Google Scholar]
- Coh, M.; Babic, V.; Maćkała, K. Biomechanical, neuro-muscular and methodical aspects of running speed development. J. Hum. Kinet. 2010, 26, 73–81. [Google Scholar] [CrossRef]
- Koźlenia, D.; Domaradzki, J.; Trojanowska, I.; Czermak, P. Association between speed and agility abilities with movement patterns quality in team sports players. Med. Dello Sport 2020, 73, 176–186. [Google Scholar] [CrossRef]
- Marck, A.; Antero, J.; Berthelot, G.; Saulière, G.; Jancovici, J.-M.; Masson-Delmotte, V.; Boeuf, G.; Spedding, M.; Le Bourg, É.; Toussaint, J.-F. Are we reaching the limits of homo sapiens? Front. Physiol. 2017, 8, 288679. [Google Scholar] [CrossRef] [PubMed]
- Willwacher, S.; Mai, P.; Helwig, J.; Hipper, M.; Utku, B.; Robbin, J. Does advanced footwear technology improve track and road racing performance? An explorative analysis based on the 100 best yearly performances in the world between 2010 and 2022. Sports Med. Open 2024, 10, 14. [Google Scholar] [CrossRef]
- Healey, L.; Bertschy, M.; Kipp, S.; Hoogkamer, W. Can we quantify the benefits of “super spikes” in track running? Sports Med. 2022, 52, 1211–1218. [Google Scholar] [CrossRef]
- Mason, J.; Niedziela, D.; Morin, J.-B.; Groll, A.; Zech, A. The potential impact of advanced footwear technology on the recent evolution of elite sprint performances. PeerJ 2023, 11, e16433. [Google Scholar] [CrossRef]
- Bachman, R. Nike Super Spikes Are so Fast That Rivals Are Wearing Them. The Wall Street Journal. 14 June 2021. Available online: https://www.wsj.com/articles/nike-vaporfly-victory-super-spikes-so-fast-rivals-wearing-them-11623640980 (accessed on 6 September 2023).
- Smith, G.; Lake, M.; Sterzing, T.; Milani, T. Spray spike bending stiffness influences sprinting performance and metatarsophalangeal joint function. Footwear Sci. 2016, 8, 109–118. [Google Scholar] [CrossRef]
- Nagahara, R.; Kanehisa, H.; Fukunaga, T. Influence of shoe sole bending stiffness on sprinting performance. J. Sports Med. Phys. Fit. 2017, 58, 1735–1740. [Google Scholar] [CrossRef]
- Rabita, G.; Dorel, S.; Slawinski, J.; Sàez-De-Villarreal, E.; Couturier, A.; Samozino, P.; Morin, J.B. Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports 2015, 25, 583–594. [Google Scholar] [CrossRef]
- Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J. Appl. Biomech. 2018, 34, 104–110. [Google Scholar] [CrossRef]
- Nagahara, R.; Kanehisa, H.; Fukunaga, T. Ground reaction force across the transition during sprint acceleration. Scand. J. Med. Sci. Sports 2020, 30, 450–461. [Google Scholar] [CrossRef]
- Wiesinger, H.-P.; Rieder, F.; Kösters, A.; Müller, E.; Seynnes, O.R. Sport-specific capacity to use elastic energy in the patellar and Achilles tendons of elite athletes. Front. Physiol. 2017, 8, 132. [Google Scholar]
- Aeles, J.; Jonkers, I.; Debaere, S.; Delecluse, C.; Vanwanseele, B. Muscle–Tendon unit length changes differ between young and adult sprinters in the first stance phase of sprint running. R. Soc. Open Sci. 2018, 5, 180332. [Google Scholar] [PubMed]
- Schroeder, R.T.; Kuo, A.D. Elastic energy savings and active energy cost in a simple model of running. PLoS Comput. Biol. 2021, 17, e1009608. [Google Scholar]
- Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session. J. Sports Sci. 2018, 36, 1392–1401. [Google Scholar]
- Stefanyshyn, D.J.; Nigg, B.M. Influence of midsole bending stiffness on joint energy and jump height performance. Med. Sci. Sports Exerc. 2000, 32, 471. [Google Scholar]
- Nigg, B.M.; Cigoja, S.; Nigg, S.R. Teeter-totter effect: A new mechanism to understand shoe-related improvements in long-distance running. Br. J. Sports Med. 2021, 55, 462–463. [Google Scholar]
- Krell, J.B.; Stefanyshyn, D.J. The relationship between extension of the metatarsophalangeal joint and sprint time for 100 m Olympic athletes. J. Sports Sci. 2006, 24, 175–180. [Google Scholar]
- Stefanyshyn, D.; Fusco, C. Athletics: Increased shoe bending stiffness increases sprint performance. Sports Biomech. 2004, 3, 55–66. [Google Scholar]
- Gajer, B.; Thepaut-Mathieu, C.; Lehenaff, D. Evolution of stride and amplitude during course of the 100 m event in athletics. New Stud. Athl. 1999, 14, 43–50. [Google Scholar]
- Ferro, A.; Rivera, A.; Pagola, I.; Ferreruela, M.; Martin, A.; Rocandio, V. Biomechanical analysis of the 7th World Championships in Athletics Seville 1999. New Stud. Athl. 2001, 16, 25–60. [Google Scholar]
- Hunter, J.P.; Marshall, R.N.; Mcnair, P.J. Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [PubMed]
- Frederick, E. Let’s just call it advanced footwear technology (AFT). Footwear Sci. 2022, 14, 131. [Google Scholar]
- Hoogkamer, W.; Kipp, S.; Spiering, B.A.; Kram, R. Altered running economy directly translates to altered distance-running performance. Med. Sci. Sports Exerc. 2016, 48, 2175–2180. [Google Scholar]
- Senefeld, J.W.; Haischer, M.H.; Jones, A.M.; Wiggins, C.C.; Beilfuss, R.; Joyner, M.J.; Hunter, S.K. Technological advances in elite marathon performance. J. Appl. Physiol. 2021, 130, 2002–2008. [Google Scholar]
- Biewener, A.A.; Roberts, T.J. Muscle and tendon contributions to force, work, and elastic energy savings: A comparative perspective. Exerc. Sport Sci. Rev. 2000, 28, 99–107. [Google Scholar]
- Lichtwark, G.A.; Cresswell, A.G.; Newsham-West, R.J. Effects of running on human Achilles tendon length–tension properties in the free and gastrocnemius components. J. Exp. Biol. 2013, 216, 4388–4394. [Google Scholar] [CrossRef]
- Roberts, T.J. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. J. Exp. Biol. 2016, 219, 266–275. [Google Scholar]
- Manzer, S.; Mattes, K.; Holländer, K. Kinematic Analysis of Sprinting Pickup Acceleration versus Maximum Sprinting Speed. Biol. Exerc. 2016, 12, 55–67. [Google Scholar]
- Morin, J.-B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar]
- Morin, J.-B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.-R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- Debaere, S.; Vanwanseele, B.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: A cross-sectional study. Sports Biomech. 2017, 16, 452–462. [Google Scholar] [CrossRef]
- Takahashi, K.Z.; Gross, M.T.; Van Werkhoven, H.; Piazza, S.J.; Sawicki, G.S. Adding stiffness to the foot modulates soleus force-velocity behaviour during human walking. Sci. Rep. 2016, 6, 29870. [Google Scholar] [CrossRef] [PubMed]
- Beck, O.N.; Golyski, P.R.; Sawicki, G.S. Adding carbon fiber to shoe soles may not improve running economy: A muscle-level explanation. Sci. Rep. 2020, 10, 17154. [Google Scholar] [CrossRef] [PubMed]
- Cigoja, S.; Fletcher, J.R.; Esposito, M.; Stefanyshyn, D.J.; Nigg, B.M. Increasing the midsole bending stiffness of shoes alters gastrocnemius medialis muscle function during running. Sci. Rep. 2021, 11, 749. [Google Scholar] [CrossRef]
- Nigg, B.M.; Segesser, B. Biomechanical and orthopedic concepts in sport shoe construction. Med. Sci. Sports Exerc. 1992, 24, 595–602. [Google Scholar] [CrossRef]
- Willwacher, S.; König, M.; Braunstein, B.; Goldmann, J.-P.; Brüggemann, G.-P. The gearing function of running shoe longitudinal bending stiffness. Gait Posture 2014, 40, 386–390. [Google Scholar] [CrossRef]
- Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Association of step width with accelerated sprinting performance and ground reaction force. Int. J. Sports Med. 2017, 38, 534–540. [Google Scholar] [CrossRef]
- Wiesinger, H.-P.; Rieder, F.; Kösters, A.; Müller, E.; Seynnes, O.R. Are sport-specific profiles of tendon stiffness and cross-sectional area determined by structural or functional integrity? PLoS ONE 2016, 11, e0158441. [Google Scholar] [CrossRef]
- Willwacher, S.; Kurz, M.; Menne, C.; Schrödter, E.; Brüggemann, G.-P. Biomechanical response to altered footwear longitudinal bending stiffness in the early acceleration phase of sprinting. Footwear Sci. 2016, 8, 99–108. [Google Scholar] [CrossRef]
- Comyns, T.; Hannon, A. Strength and conditioning coaches’ application of the session rating of perceived exertion method of monitoring within professional rugby union. J. Hum. Kinet. 2018, 61, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-R.; Chi, C.-H.; Lee, C.-H.; Lin, S.-H.; Min, M.-Y.; Chen, C.-C. Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors. Int. J. Mol. Sci. 2023, 24, 12783. [Google Scholar] [CrossRef] [PubMed]
Variable | Spikes | No of Sprint | Mean | SD | 95% CI | d | |
---|---|---|---|---|---|---|---|
time (s) | regular | 1 | 5.60 | 0.12 | 5.49 | 5.70 | |
2 | 5.57 | 0.13 | 5.46 | 5.69 | 0.24 | ||
carbon | 1 | 5.63 | 0.12 | 5.52 | 5.73 | 0.41 | |
2 | 5.57 | 0.17 | 5.43 | 5.72 | |||
number of steps (n) | regular | 1 | 25.25 | 1.49 | 24.01 | 26.49 | |
2 | 25.13 | 1.25 | 24.08 | 26.17 | 0.08 | ||
carbon | 1 | 25.50 | 1.51 | 24.24 | 26.76 | 0.18 | |
2 | 25.38 | 1.30 | 24.29 | 26.46 | |||
length of steps (cm) | regular | 1 | 190.59 | 10.25 | 182.02 | 199.15 | |
2 | 189.86 | 11.03 | 180.64 | 199.09 | 0.22 | ||
carbon | 1 | 188.34 | 10.48 | 179.58 | 197.10 | 0.19 | |
2 | 191.91 | 10.72 | 182.95 | 200.87 | |||
frequency of steps (Hz) | regular | 1 | 4.57 | 0.29 | 4.32 | 4.81 | |
2 | 4.60 | 0.30 | 4.35 | 4.86 | 0.07 | ||
carbon | 1 | 4.59 | 0.29 | 4.34 | 4.83 | 0.07 | |
2 | 4.58 | 0.29 | 4.34 | 4.82 | |||
contact time (s) | regular | 1 | 0.11 | 0.01 | 0.11 | 0.12 | |
2 | 0.11 | 0.01 | 0.10 | 0.12 | 0.01 | ||
carbon | 1 | 0.11 | 0.01 | 0.11 | 0.12 | 0.01 | |
2 | 0.12 | 0.02 | 0.11 | 0.13 | |||
flight time (s) | regular | 1 | 0.11 | 0.01 | 0.10 | 0.11 | |
2 | 0.11 | 0.01 | 0.10 | 0.11 | 0.01 | ||
carbon | 1 | 0.11 | 0.01 | 0.10 | 0.11 | 0.44 | |
2 | 0.12 | 0.03 | 0.09 | 0.15 |
Variable | Effect | F | p |
---|---|---|---|
time | Spikes | 1.04 | 0.341 |
Run | 3.93 | 0.088 | |
spikes * run | 1.88 | 0.213 | |
number of steps | Spikes | 2.33 | 0.170 |
Run | 1.00 | 0.351 | |
spikes * run | – | – | |
length of steps | Spikes | 0.00 | 0.949 |
Run | 1.55 | 0.253 | |
spikes * run | 1.96 | 0.204 | |
frequency of steps | Spikes | 0.00 | 1.000 |
Run | 0.79 | 0.405 | |
spikes * run | 1.42 | 0.272 | |
contact time | Spikes | 2.50 | 0.158 |
Run | 0.38 | 0.559 | |
spikes * run | 1.01 | 0.349 | |
fly time | Spikes | 0.46 | 0.519 |
Run | 0.99 | 0.353 | |
spikes * run | 1.18 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackala, K.; Krzysztofik, M.; Weber, A.; Mroczek, D.; Zajac, A. Profile of 50 m Sprinting: The Influence of Carbon-Plated Spikes on Maximum-Velocity Performance. Sensors 2025, 25, 1979. https://doi.org/10.3390/s25071979
Mackala K, Krzysztofik M, Weber A, Mroczek D, Zajac A. Profile of 50 m Sprinting: The Influence of Carbon-Plated Spikes on Maximum-Velocity Performance. Sensors. 2025; 25(7):1979. https://doi.org/10.3390/s25071979
Chicago/Turabian StyleMackala, Krzysztof, Michal Krzysztofik, Adrian Weber, Dariusz Mroczek, and Adam Zajac. 2025. "Profile of 50 m Sprinting: The Influence of Carbon-Plated Spikes on Maximum-Velocity Performance" Sensors 25, no. 7: 1979. https://doi.org/10.3390/s25071979
APA StyleMackala, K., Krzysztofik, M., Weber, A., Mroczek, D., & Zajac, A. (2025). Profile of 50 m Sprinting: The Influence of Carbon-Plated Spikes on Maximum-Velocity Performance. Sensors, 25(7), 1979. https://doi.org/10.3390/s25071979