Construction of an Automated Removal Robot for the Natural Drying of Cacao Beans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intervention Area
2.2. Assembly of the Robot—Prototype
2.2.1. Three-Dimensional Modeling
2.2.2. Control Module
2.2.3. Displacement Module
2.2.4. Removal Module
2.3. Effectiveness Test
2.3.1. Weather Conditions
2.3.2. Cacao Beans
2.3.3. Reagents
2.3.4. Determination of Moisture Content
2.3.5. Phenolic Compound Extraction
2.3.6. Determination of Total Phenolic Content
2.3.7. Determination of Grain Integrity
2.3.8. Determination of Energy Yield
2.3.9. Determination of the Removal Cycle
2.4. Analysis of Data
3. Results and Discussion
3.1. Robot Functionality
3.2. Grain Integrity, Energy Performance, and Removal Cycles of the Robot (Non-Conventional)
3.3. Drying Kinetics
3.4. Total Phenolic Content (TPC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verna, R. The History and Science of Chocolate. Malays. J. Pathol. 2013, 35, 111–121. [Google Scholar]
- Martin, M.Á.; Ramos, S. Impact of Cocoa Flavanols on Human Health. Food Chem. Toxicol. 2021, 151, 112121. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.; Ali, A. Cocoa and Chocolate in Human Health and Disease. Antioxid. Redox Signal. 2011, 15, 2779–2811. [Google Scholar] [CrossRef] [PubMed]
- Tušek, K.; Valinger, D.; Jurina, T.; Sokač Cvetnić, T.; Gajdoš Kljusurić, J.; Benković, M. Bioactives in Cocoa: Novel Findings, Health Benefits, and Extraction Techniques. Separations 2024, 11, 128. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Shim, J.; Lee, C.Y.; Lee, K.W.; Lee, H.J. Cocoa Phytochemicals: Recent Advances in Molecular Mechanisms on Health. Crit. Rev. Food Sci. Nutr. 2014, 54, 1458–1472. [Google Scholar] [CrossRef]
- Cruz Chaustre, R.A.; Cañas Castillo, P.C. La Importancia de La Exportación Del Cacao En Colombia y Los Países En América Latina. Rev. Investig. Gestión 2018, 1, 18–27. [Google Scholar] [CrossRef]
- Erazo Solorzano, C.; Disca, V.; Muñoz-Redondo, J.; Tuárez García, D.; Sánchez-Parra, M.; Carrilo Zenteno, M.; Moreno-Rojas, J.; Rodríguez-Solana, R. Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa. Foods 2023, 12, 1065. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, A.-A.F.; Valle, R.R. Ecophysiology of the Cacao Tree. Braz. J. Plant Physiol. 2007, 19, 425–448. [Google Scholar] [CrossRef]
- do Carmo Mazzinghy, A.; Silva, V.; Ramos, A.; de Oliveira, C.; de Oliveira, G.; Augusti, R.; de Araújo, R.; Melo, J. Influence of the Different Maturation Conditions of Cocoa Beans on the Chemical Profile of Craft Chocolates. Foods 2024, 13, 1031. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Desarrollo Agrario y Riego. Cacao: Observatorio de Commodities; Ministerio de Desarrollo Agrario y Riego: Cajamarca, Peru, 2023.
- Guzmán, J.H.; Chire Fajardo, G.C. Evaluación de La Cadena de Valor Del Cacao (Theobroma cacao L.) Peruano. Enfoque UTE 2019, 10, 97–116. [Google Scholar] [CrossRef]
- Rodríguez-Delzo, E.E.; Huerta-Guillén, R.; Montañez-Artica, A.G. Identificación de Variables Que Mejoren La Cadena Productiva de Cacao (Theobroma Cacao L.) y Su Importancia Para El Desarrollo Del VRAEM–Perú. Rev. Agrotecnológica Amaz. 2023, 3, e465. [Google Scholar] [CrossRef]
- Rios-Jara, J.; Lévano-Rodríguez, D. Importancia de Los Dispositivos Usados En La Fermentación de Cacao (Theobroma cacao L.). Rev. Agrotecnológica Amaz. 2022, 2, e281. [Google Scholar] [CrossRef]
- Chávez-Salazar, A.; Guevara-Pérez, A.; Encina-Zelada, C.; Vidaurre-Rojas, P.; Muñoz-Delgado, V. Condiciones de Fermentación y Secado En Las Características Físico Químicas Del Cacao (Theobroma cacao L.) Cultivar CCN 51. Rev. Agrotecnológica Amaz. 2023, 3, e555. [Google Scholar] [CrossRef]
- Cedeño Alcívar, D.C.; Cedeño Guzmán, W.P.; Vera Macías, L.A.; Vélez Zambrano, S.M. Inhibición Del Crecimiento in Vitro de Bacillus Spp Sobre Hongos Asociados Al Proceso de Fermentación En Cacao. Manglar 2023, 20, 233–238. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Bryła, M.; Waśkiewicz, A.; Ksieniewicz-Woźniak, E.; Podolska, G. Ochratoxin A and 2′R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2021, 27, 188. [Google Scholar] [CrossRef]
- Kolawole, O.O.; Salawu, A.R.; Okunade, A.F.; Aroyeun, S.O. Ochratoxin A: A Persistent Menace in Nigerian Stored Cocoa Beans. Curr. J. Appl. Sci. Technol. 2020, 39, 86–92. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Arango-Angarita, J.; Cuervo, J.L. Effect of Solar Pre-Drying and Yeast Starter Inoculation Treatments on the Chemical Composition of Cocoa (Theobroma cacao L.) Beans from Southwestern Colombia. Foods 2023, 12, 4455. [Google Scholar] [CrossRef] [PubMed]
- Ademola, S.M.; Esan, V.I.; Sangoyomi, T.E. Assessment of Pesticide Knowledge, Safety Practices and Postharvest Handling among Cocoa Farmers in South Western Nigeria. Heliyon 2024, 10, e31724. [Google Scholar] [CrossRef]
- Condori, D.; Espichan, F.; Macassi, A.L.S.; Carbajal, L.; Rojas, R. Study of the Post-Harvest Processes of the Peruvian Chuncho Cocoa Using Multivariate and Multi-Block Analysis. Food Chem. 2024, 431, 137123. [Google Scholar] [CrossRef]
- Erazo Solorzano, C.Y.; Tuárez García, D.A.; Edison Zambrano, C.; Moreno-Rojas, J.M.; Rodríguez Solana, R. Monitoring Changes in the Volatile Profile of Ecuadorian Cocoa during Different Steps in Traditional On-Farm Processing. Plants 2023, 12, 3904. [Google Scholar] [CrossRef] [PubMed]
- Dzelagha, B.F.; Ngwa, N.M.; Nde Bup, D. A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. Int. J. Food Sci. 2020, 2020, 8830127. [Google Scholar] [CrossRef] [PubMed]
- Mbakouop, A.N.; Tchakounté, H.; Ankungha, A.I.; Nzoundja Fapi, C.B. Experimental Performance Analysis of a Mixed Forced Convection Solar Dryer: Application to Cocoa Bean Drying. Sol. Energy 2023, 257, 110–124. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Tamkam Etala, H.D.; Tagne Tagne, A.; Ndukwu, M.C.; El Marouani, M. Energy, Environmental and Economic Analyses of an Indirect Cocoa Bean Solar Dryer: A Comparison between Natural and Forced Convections. Renew. Energy 2022, 187, 1154–1172. [Google Scholar] [CrossRef]
- Tardzenyuy, M.E.; Jianguo, Z.; Akyene, T.; Mbuwel, M.P. Improving Cocoa Beans Value Chain Using a Local Convection Dryer: A Case Study of Fako Division Cameroon. Sci. Afr. 2020, 8, e00343. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: New York, NY, USA, 1999; pp. 152–178. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Mudalip, S.K.A.; Olalere, O.A. Characterization and Effect of Extraction Solvents on the Yield and Total Phenolic Content from Vernonia amygdalina Leaves. J. Food Meas. Charact. 2018, 12, 311–316. [Google Scholar] [CrossRef]
- Corrales, B.P.; Jaya, L.D.; Vaca, J.R.; Zambrano, X.A. Control System for a Cacao Drying Process: Case Study Cylindrical Dryer. In Systems, Smart Technologies and Innovation for Society; Springer: Berlin/Heidelberg, Germany, 2024; pp. 71–80. [Google Scholar]
- Lopez, A.S.; Dimick, P.S. Enzymes Involved in Cocoa Curing. In Food Enzymology; Elsevier Science: Amsterdam, The Netherlands, 1991; pp. 211–236. [Google Scholar]
- Opeke, L.K. Tropical Tree Crops; John Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Lasisi, D. A Comparative Study of Effects of Drying Methods on Quality of Cocoa Beans. Int. J. Eng. Res. Technol. 2014, 3, 991–996. [Google Scholar]
- Wollgast, J.; Anklam, E. Review on Polyphenols in Theobroma Cacao: Changes in Composition during the Manufacture of Chocolate and Methodology for Identification and Quantification. Food Res. Int. 2000, 33, 423–447. [Google Scholar] [CrossRef]
- Frederick, B.D.; Ngwabie, N.M.; Bup, N.D. Effect of Modified Greenhouse Drying Technology on the Physicochemical Quality of Cameroonian Cocoa Beans. Int. J. Food Sci. 2022, 2022, 9741120. [Google Scholar] [CrossRef] [PubMed]
- Banboye, F.D.; Ngwabie, M.N.; Eneighe, S.A.; Nde, D.B. Assessment of Greenhouse Technologies on the Drying Behavior of Cocoa Beans. Food Sci. Nutr. 2020, 8, 2748–2757. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.L.; Law, C.L.; Cloke, M.; Suzannah, S. Thin Layer Drying Kinetics of Cocoa and Dried Product Quality. Biosyst. Eng. 2009, 102, 153–161. [Google Scholar] [CrossRef]
- Hii, C.L.; Law, C.L.; Suzannah, S. Drying Kinetics of the Individual Layer of Cocoa Beans during Heat Pump Drying. J. Food Eng. 2012, 108, 276–282. [Google Scholar] [CrossRef]
- MacManus Chinenye, N.; Ogunlowo, A.; Olukunle, O. Cocoa Bean (Theobroma cacao L.)Drying Kinetics. Chil. J. Agric. Res. 2010, 70, 633–639. [Google Scholar] [CrossRef]
- Zahouli, G.I.B.; Guehi, S.T.; Fae, A.M.; Ban-Koffi, L.; Nemlin, J.G. Effect of Drying Methods on the Chemical Quality Traits of Cocoa Raw Material. Adv. J. Food Sci. Technol. 2010, 2, 184–190. [Google Scholar]
- Dina, S.F.; Ambarita, H.; Napitupulu, F.H.; Kawai, H. Study on Effectiveness of Continuous Solar Dryer Integrated with Desiccant Thermal Storage for Drying Cocoa Beans. Case Stud. Therm. Eng. 2015, 5, 32–40. [Google Scholar] [CrossRef]
- Guda, P.; Gadhe, S.; Jakkula, S. Drying of Cocoa Beans by Using Different Techniques. Int. J. Agric. Innov. Res. 2017, 5, 859–865. [Google Scholar]
- Niikoi Kotey, R.; Asomaning Odoom, D.; Kumah, P.; Oppong Akowuah, J.; Fobi Donkor, E.; Kwatei Quartey, E.; Kofi Sam, E.; Owusu-Kwarteng, J.; Gyasi Santo, K.; Kwami-Adala, F.; et al. Effects of Fermentation Periods and Drying Methods on Postharvest Quality of Cocoa (Theobroma cacao) Beans in Ghana. J. Food Qual. 2022, 2022, 7871543. [Google Scholar] [CrossRef]
- Akmel, D.C.; Assidjo, N.E.; Kouamé, P.; Yao, K.B. Mathematical Modelling of Sun Drying Kinetics of Thin Layer Cocoa (Theobroma cacao) Beans. J. Appl. Sci. Res. 2009, 5, 1110–1116. [Google Scholar]
- Deus, V.L.; de Cerqueira E Silva, M.B.; Maciel, L.F.; Miranda, L.C.R.; Hirooka, E.Y.; Soares, S.E.; de Souza Ferreira, E.; da Silva Bispo, E. Influence of Drying Methods on Cocoa (Theobroma cacao L.): Antioxidant Activity and Presence of Ochratoxin A. Food Sci. Technol. 2018, 38, 278–285. [Google Scholar] [CrossRef]
- Fagunwa, A.O.; Koya, O.A.; Faborode, M.O. Development of an Intermittent Solar Dryer for Cocoa Beans. Agric. Eng. Int. CIGR Ejournal 2009, 11, 1–14. [Google Scholar]
- Hii, C.L.; Abdul Rahman, R.; Jinap, S.; Che Man, Y. Quality of Cocoa Beans Dried Using a Direct Solar Dryer at Different Loadings. J. Sci. Food Agric. 2006, 86, 1237–1243. [Google Scholar] [CrossRef]
- Guehi, T.S.; Zahouli, I.B.; Ban-Koffi, L.; Fae, M.A.; Nemlin, J.G. Performance of Different Drying Methods and Their Effects on the Chemical Quality Attributes of Raw Cocoa Material. Int. J. Food Sci. Technol. 2010, 45, 1564–1571. [Google Scholar] [CrossRef]
- Kyi, T.M.; Daud, W.R.W.; Mohammad, A.B.; Wahid Samsudin, M.; Kadhum, A.A.H.; Talib, M.Z.M. The Kinetics of Polyphenol Degradation during the Drying of Malaysian Cocoa Beans. Int. J. Food Sci. Technol. 2005, 40, 323–331. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef] [PubMed]
- Santhanam Menon, A.; Hii, C.L.; Law, C.L.; Shariff, S.; Djaeni, M. Effects of Drying on the Production of Polyphenol-Rich Cocoa Beans. Dry. Technol. 2017, 35, 1799–1806. [Google Scholar] [CrossRef]
- Maldonado, Y.E.; Figueroa, J.G. Microwave-Assisted Extraction Optimization and Effect of Drying Temperature on Catechins, Procyanidins and Theobromine in Cocoa Beans. Molecules 2023, 28, 3755. [Google Scholar] [CrossRef]
- Alean, J.; Chejne, F.; Ramírez, S.; Rincón, E.; Alzate-Arbelaez, A.F.; Rojano, B. Proposal of a Method to Evaluate the In-Situ Oxidation of Polyphenolic during the Cocoa Drying. Dry. Technol. 2022, 40, 559–570. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Kongor, J.E.; Takrama, J.F.; Budu, A.S.; Mensah-Brown, H. Effects of Pulp Preconditioning on Total Polyphenols, O-Diphenols and Anthocyanin Concentrations during Fermentation and Drying of Cocoa (Theobroma cacao) Beans. J. Food Sci. Eng. 2013, 3, 235–245. [Google Scholar]
- Teh, Q.T.M.; Tan, G.L.Y.; Loo, S.M.; Azhar, F.Z.; Menon, A.S.; Hii, C.L. The Drying Kinetics and Polyphenol Degradation of Cocoa Beans. J. Food Process Eng. 2016, 39, 484–491. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Zeppa, G.; Ferrocino, I.; Stévigny, C.; Barbosa-Pereira, L. Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays. Antioxidants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Escudero, F.; Casimiro-Gonzales, S.; Fernández-Prior, Á.; Cancino Chávez, K.; Gómez-Mendoza, J.; de la Fuente-Carmelino, L.; Muñoz, A.M. Colour, Fatty Acids, Bioactive Compounds, and Total Antioxidant Capacity in Commercial Cocoa Beans (Theobroma cacao L.). LWT 2021, 147, 111629. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Belviso, S.; Ferrocino, I.; Rojo-Poveda, O.; Zeppa, G. Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods 2021, 10, 1791. [Google Scholar] [CrossRef] [PubMed]
- Setiyoningrum, F.; Priadi, G.; Afiati, F.; Chaerunissa, L.; Belgis, M.; Perwitasari, U.; Juanssilfero, A.B.; Fahrurrozi; Tarigan, E.B.; Vincentlau, D. Phytochemical and Bioactive Compounds of Cocoa Beans as Supplement Ingredient Affected by Drying Methods. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 1756–1762. [Google Scholar] [CrossRef]
- Oracz, J.; Zyzelewicz, D.; Nebesny, E. The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1176–1192. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, B.; Kowalska, J. Comparison of the Total Polyphenol Content and Antioxidant Activity of Chocolate Obtained from Roasted and Unroasted Cocoa Beans from Different Regions of the World. Antioxidants 2019, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Mazor Jolić, S.; Radojčić Redovniković, I.; Marković, K.; Ivanec Šipušić, Đ.; Delonga, K. Changes of Phenolic Compounds and Antioxidant Capacity in Cocoa Beans Processing. Int. J. Food Sci. Technol. 2011, 46, 1793–1800. [Google Scholar] [CrossRef]
- Sanchez-Calle, J.E.; Castillo Armas, G.P. Algoritmos y Su Efecto En La Agricultura. Rev. Cient. Sist. Inform. 2022, 2, e386. [Google Scholar] [CrossRef]
- Vásquez-Cortez, L.H.; Rojas-Sánchez, J.; Pazmiño-Pérez, Á.; Rodríguez-Cevallos, S.L. Desarrollo de Una Bebida Energizante a Base de Cacao y Guayusa. Rev. Peru. Investig. Agropecu. 2024, 3, e66. [Google Scholar] [CrossRef]
- Jimenez-Peralta, F.; Pizango-Linares, G.E. Sistema Inteligente Basado En Deep Learning Para La Optimización de La Fermentación Del Cacao. Rev. Amaz. Digit. 2023, 2, e277. [Google Scholar] [CrossRef]
Component | Manufacturer | Model |
---|---|---|
Solar panel | TrinaSolar (Changzhou, China) | TSM-455DE17M |
Inverter charger | Growatt (Shenzhen, China) | SPF 5000 ES |
Battery | Shoto (Yangzhou, China) | SDA10-4850 |
2HP frequency converter | Siemens Yangzhou, China | Sinamics V20 |
PLC | Siemens (Yangzhou, China) | Logo V8 |
Screen | Siemens Yangzhou, China | KTP400 |
Switch | Siemens Yangzhou, China | Scalance Xb008 |
2HP three-phase motor | Rainbow Yangzhou, China | MS0L-4 |
Switch sensor (LIMIT SWITCH) | CNC (Shanghai, China) | AZ-8108 |
80:1 ratio endless crown reduction box | Mark Motors (Shenzhen, China) | NMRV063 |
Drag chain | Honda (Minato, Japan) | 428H-150L ST |
Power supply | National Instruments (Austin, TX, USA) | NI PS-15 |
Batch | Inside the Drying Chamber | ||||||||
Temperature (°C) | Moisture (%) | Light (lx) | |||||||
Max. | Min. | Avg. | Max. | Min. | Avg. | Max. | Min. | Avg. | |
I | 58.6 | 24.7 | 33.21 | 88 | 15 | 62.24 | 50,910 | 0.5 | 8302.61 |
II | 52.2 | 24.5 | 31.39 | 90 | 22 | 69.92 | 50,770 | 0.3 | 7302.74 |
III | 59.3 | 24.6 | 32.99 | 90 | 15 | 64.51 | 42,230 | 0.7 | 8027.31 |
IV | 56.2 | 24.1 | 30.98 | 92 | 18 | 69.74 | 38,580 | 0.7 | 6350.21 |
Batch | Outside the Drying Chamber | ||||||||
Temperature (°C) | Moisture (%) | Wind (Km/h) | |||||||
Max. | Min. | Avg. | Max. | Min. | Avg. | Max. | Min. | Avg. | |
I | 36.6 | 23 | 26.84 | 97 | 43 | 83.32 | 8 | 0 | 1.259 |
II | 33.4 | 23 | 26.23 | 97 | 61 | 88.50 | 4.8 | 0 | 0.73 |
III | 33.9 | 22 | 26.35 | 97 | 51 | 85.49 | 6.4 | 0 | 0.791 |
IV | 33.9 | 22 | 25.39 | 98 | 55 | 89.73 | 6.4 | 0 | 0.73 |
Batch | Non-Conventional (Robot) | Conventional | |||
---|---|---|---|---|---|
Drying Time (Horas) | Energy Consumption (kW) | Removal Cycles | Grain Integrity (%) | Grain Integrity (%) | |
I | 248 | 13 | 218 | 98.8 | 99.8 |
II | 148 | 3 | 141 | 99.8 | 99.1 |
III | 177 | 9 | 156 | 99.6 | 99.8 |
IV | 192 | 10 | 151 | 99.3 | 99.6 |
Batch | Grain Status | Non-Conventional (Robot) | Conventional | ||
---|---|---|---|---|---|
Testa | Cotyledon | Testa | Cotyledon | ||
I | Star | 5.38 ± 0.46aAa | 4.39 ± 0.20aAb | 2.32 ± 0.16aBb | 3.05 ± 0.38aBa |
Final | 0.79 ± 0.48bAb | 2.27 ± 0.47bAa | 0.60 ± 0.18bAb | 2.13 ± 0.40bAa | |
II | Star | 4.33 ± 0.14aAb | 4.76 ± 0.07aAa | 4.23 ± 0.25aAa | 4.30 ± 0.52aAa |
Final | 1.42 ± 0.17bAb | 2.09 ± 0.70bAa | 0.64 ± 0.05bBb | 1.45 ± 0.47bBa | |
III | Star | 5.56 ± 0.24aAa | 4.53 ± 0.22aAb | 2.94 ± 0.31aBb | 3.77 ± 0.15aBa |
Final | 1.28 ± 0.08bAb | 2.27 ± 0.47bAa | 0.57 ± 0.10bBb | 1.58 ± 0.23bBa | |
IV | Star | 3.36 ± 0.17aAb | 4.65 ± 0.27aAa | 3.36 ± 0.33aAa | 3.00 ± 0.13aBb |
Final | 0.59 ± 0.05bBb | 1.25 ± 0.23bAa | 0.76 ± 0.15bAb | 1.35 ± 0.24bAa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuanama-Aguilar, J.; Ríos-López, C.; Pasquel-Reátegui, J.L.; Rodríguez-Grández, C.; Santa-Maria, J.C.; Cotrina-Linares, J.; García-Estrella, C.; Fermin-Perez, F.-A. Construction of an Automated Removal Robot for the Natural Drying of Cacao Beans. Sensors 2025, 25, 1520. https://doi.org/10.3390/s25051520
Tuanama-Aguilar J, Ríos-López C, Pasquel-Reátegui JL, Rodríguez-Grández C, Santa-Maria JC, Cotrina-Linares J, García-Estrella C, Fermin-Perez F-A. Construction of an Automated Removal Robot for the Natural Drying of Cacao Beans. Sensors. 2025; 25(5):1520. https://doi.org/10.3390/s25051520
Chicago/Turabian StyleTuanama-Aguilar, José, Carlos Ríos-López, José Luis Pasquel-Reátegui, Carlos Rodríguez-Grández, John C. Santa-Maria, Janina Cotrina-Linares, Cristian García-Estrella, and Felix-Armando Fermin-Perez. 2025. "Construction of an Automated Removal Robot for the Natural Drying of Cacao Beans" Sensors 25, no. 5: 1520. https://doi.org/10.3390/s25051520
APA StyleTuanama-Aguilar, J., Ríos-López, C., Pasquel-Reátegui, J. L., Rodríguez-Grández, C., Santa-Maria, J. C., Cotrina-Linares, J., García-Estrella, C., & Fermin-Perez, F.-A. (2025). Construction of an Automated Removal Robot for the Natural Drying of Cacao Beans. Sensors, 25(5), 1520. https://doi.org/10.3390/s25051520