Accuracy of an Ultra-Wideband-Based Tracking System for Time–Motion Analysis in Tennis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment and Venue
2.3. Experiment Procedures
- Running Tasks (Without Rackets)
- Circle Walk, Jog, Sprint and Slide Run: Participants performed three laps around a circular perimeter at different paces: walking, jogging, and sprinting. Participants also executed a slide run, which involves lateral movement maintaining a low center of gravity while effectively shifting weight from one leg to the other.
- Warm-Up Ladder: Participants completed various rope ladder drills, including two steps forward, two steps lateral shuffle, in and out, open–close, quick steps. The two steps forward drill focused on forward propulsion, while the two steps lateral shuffle emphasized lateral movement skills. The in and out drill required rapid foot placements inside and outside the ladder rungs to develop quickness, whereas the open–close drill concentrated on efficient foot positioning. Lastly, the quick steps drill aimed to maximize cadence and rhythm, promoting overall lower-body explosiveness.
- T-Run: Participants executed dynamic movements in a T-shaped area (4.5 m × 6 m), covering approximately 21 m in total, including forward sprint, lateral shuffle, and backward cross-step.
- Spider Run: Participants ran to five points arranged in a fan pattern (3 m distance) to retrieve balls, returning each to a central tray.
- Tennis-Specific Tasks (With Rackets)
- Tennis Tactics: Participants practiced various shots which mimic the actual tennis rally; participants start at serve, and then baseline FH and BH moving, FH or BH approaching, and then FH and BH volley; ends at smash.
- Girard Tennis Test [23]: Participants performed six directional movements (two forward sprints, two lateral, and two backward) each covering 3 m, totaling 36 m.
- Tennis Practice (With Balls)
- Simulation of Small-Court Rallying: A two-minute timed exercise simulating rallying.
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Position Accuracy
3.2. Inter-Unit Reliability
4. Discussion
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reid, M.; Duffield, R.; Dawson, B.; Baker, J.; Crespo, M. Quantification of the physiological and performance characteristics of on-court tennis drills. Br. J. Sports Med. 2008, 42, 146–151, discussion 151. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. S2), S139–S147. [Google Scholar] [CrossRef] [PubMed]
- Kolman, N.S.; Kramer, T.; Elferink-Gemser, M.T.; Huijgen, B.C.H.; Visscher, C. Technical and tactical skills related to performance levels in tennis: A systematic review. J. Sports Sci. 2019, 37, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Pluim, B.M.; Jansen, M.G.T.; Williamson, S.; Berry, C.; Camporesi, S.; Fagher, K.; Heron, N.; van Rensburg, D.C.J.; Moreno-Pérez, V.; Murray, A.; et al. Physical Demands of Tennis Across the Different Court Surfaces, Performance Levels and Sexes: A Systematic Review with Meta-analysis. Sports Med. 2023, 53, 807–836. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef] [PubMed]
- Giles, B.; Peeling, P.; Reid, M. Quantifying Change of Direction Movement Demands in Professional Tennis Matchplay: An Analysis From the Australian Open Grand Slam. J. Strength. Cond. Res. 2024, 38, 517–525. [Google Scholar] [CrossRef]
- Leser, R.; Baca, A.; Ogris, G. Local positioning systems in (game) sports. Sensors 2011, 11, 9778–9797. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef] [PubMed]
- Duffield, R.; Reid, M.; Baker, J.; Spratford, W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J. Sci. Med. Sport. 2010, 13, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Simpson, B.M. Player-Tracking Technology: Half-Full or Half-Empty Glass? Int. J. Sports Physiol. Perform. 2017, 12, S2-35–S2-41. [Google Scholar] [CrossRef] [PubMed]
- Conte, D. Validity of local positioning systems to measure external load in sport settings: A brief review. Human Mov. 2020, 21, 30–36. [Google Scholar] [CrossRef]
- Bastida Castillo, A.; Gómez Carmona, C.D.; De la Cruz Sánchez, E.; Pino Ortega, J. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. Eur. J. Sport Sci. 2018, 18, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Linke, D.; Link, D.; Lames, M. Validation of electronic performance and tracking systems EPTS under field conditions. PLoS ONE 2018, 13, e0199519. [Google Scholar] [CrossRef]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Mason, B.; Perrat, B.; Smith, M.; Goosey-Tolfrey, V. The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports. J. Sports Sci. 2014, 32, 1639–1647. [Google Scholar] [CrossRef]
- Serpiello, F.R.; Hopkins, W.G.; Barnes, S.; Tavrou, J.; Duthie, G.M.; Aughey, R.J.; Ball, K. Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. J. Sports Sci. 2018, 36, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Umek, A.; Kos, A. Validation of UWB positioning systems for player tracking in tennis. Pers. Ubiquitous Comput. 2022, 26, 1023–1033. [Google Scholar] [CrossRef]
- Seçkin, A.Ç.; Ateş, B.; Seçkin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific Drills, in Indoor Conditions. Front. Physiol. 2018, 9, 115. [Google Scholar] [CrossRef]
- Saini, M.; Kerrigan, D.C.; Thirunarayan, M.A.; Duff-Raffaele, M. The vertical displacement of the center of mass during walking: A comparison of four measurement methods. J. Biomech. Eng. 1998, 120, 133–139. [Google Scholar] [CrossRef]
- Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef]
- Spoor, C.W.; Veldpaus, F.E. Rigid body motion calculated from spatial co-ordinates of markers. J. Biomech. 1980, 13, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Chevalier, R.; Leveque, F.; Micallef, J.P.; Millet, G.P. Specific incremental field test for aerobic fitness in tennis. Br. J. Sports Med. 2006, 40, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Siauw, T.; Bayen, A.M. Chapter 17—Interpolation. In Python Programming and Numerical Methods; Kong, Q., Siauw, T., Bayen, A.M., Eds.; Academic Press: London, UK; San Diego, CA, USA, 2021; pp. 295–313. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Goodall, C. Procrustes Methods in the Statistical Analysis of Shape. J. R. Stat. Soc. Ser. B (Methodol.) 1991, 53, 285–321. [Google Scholar] [CrossRef]
- Senior, D. Qualisys Track Manager: User Manual. 2004. Available online: https://nrc-publications.canada.ca/eng/view/object/?id=de61d2e8-121c-49f7-868e-2ec8ac7175ba (accessed on 1 February 2025). [CrossRef]
- Scott, M.T.; Scott, T.J.; Kelly, V.G. The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. J. Strength. Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K. Alternatives to P value: Confidence interval and effect size. Korean J. Anesthesiol. 2016, 69, 555–562. [Google Scholar] [CrossRef]
- Liu, X.S. Bias correction for Cohen’s d. J. Gen. Psychol. 2024, 151, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Fleureau, A.; Lacome, M.; Buchheit, M.; Couturier, A.; Rabita, G. Validity of an ultra-wideband local positioning system to assess specific movements in handball. Biol. Sport 2020, 37, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
N | RMSE (m) | MAE (m) | Max Error (m) | Mean Error (m) | SD of Error (m) | Average Error (%) | Error Interpretation | |
---|---|---|---|---|---|---|---|---|
Circle Running | ||||||||
Walk | 27 | 2.98 | 2.28 | 7.62 | −0.84 | 2.91 | 9.96 | acceptable |
Jog | 27 | 4.02 | 3.02 | 14.28 | −1.40 | 3.85 | 12.86 | poor |
Sprint | 27 | 2.18 | 1.87 | 4.20 | −1.27 | 1.80 | 8.18 | acceptable |
Slide | 27 | 4.72 | 3.18 | 14.30 | 2.96 | 3.74 | 14.42 | poor |
Tennis-Specific Running | ||||||||
Agility ladder 1: 2 steps forward | 9 | 2.41 | 2.02 | 5.10 | 1.77 | 1.74 | 17.62 | poor |
Agility ladder 2: 2 steps sideways | 9 | 2.37 | 1.52 | 6.08 | 1.52 | 1.93 | 16.42 | poor |
Agility ladder 3: Split steps | 9 | 3.77 | 3.14 | 6.54 | 3.14 | 2.21 | 27.70 | poor |
Agility ladder 4: Shuffle in and out | 9 | 2.36 | 2.23 | 3.41 | 2.225 | 0.85 | 20.27 | poor |
Agility ladder 5: Fast feet | 9 | 1.45 | 1.27 | 2.61 | 1.14 | 0.95 | 10.93 | poor |
All agility ladder | 45 | 2.58 | 2.03 | 6.54 | 1.96 | 1.70 | 18.59 | poor |
Spider Run | 18 | 5.90 | 5.07 | 12.00 | 4.13 | 4.34 | 16.17 | poor |
T-run | 18 | 1.38 | 1.19 | 3.07 | 0.99 | 1.00 | 6.34 | acceptable |
With Rackets | ||||||||
Girard Run | 18 | 7.07 | 6.31 | 14.28 | 6.31 | 3.27 | 19.23 | poor |
Tactics | 18 | 7.14 | 6.29 | 14.81 | 6.29 | 3.47 | 29.04 | poor |
Practice | 9 | 54.32 | 51.70 | 88.22 | 51.70 | 17.67 | 49.00 | poor |
Summary | ||||||||
Total distance | 9 | 100.07 | 82.57 | 196.16 | −72.73 | 72.90 | 12.72 | poor |
All tests | 234 | 11.46 | 5.02 | 88.22 | 3.66 | 10.88 | 16.29 | poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Wang, J.; Zhao, Z.; Cui, Y. Accuracy of an Ultra-Wideband-Based Tracking System for Time–Motion Analysis in Tennis. Sensors 2025, 25, 1031. https://doi.org/10.3390/s25041031
Yang W, Wang J, Zhao Z, Cui Y. Accuracy of an Ultra-Wideband-Based Tracking System for Time–Motion Analysis in Tennis. Sensors. 2025; 25(4):1031. https://doi.org/10.3390/s25041031
Chicago/Turabian StyleYang, Wenpu, Jinzheng Wang, Zichen Zhao, and Yixiong Cui. 2025. "Accuracy of an Ultra-Wideband-Based Tracking System for Time–Motion Analysis in Tennis" Sensors 25, no. 4: 1031. https://doi.org/10.3390/s25041031
APA StyleYang, W., Wang, J., Zhao, Z., & Cui, Y. (2025). Accuracy of an Ultra-Wideband-Based Tracking System for Time–Motion Analysis in Tennis. Sensors, 25(4), 1031. https://doi.org/10.3390/s25041031