Impact Mechanism of Spectral Differentiation on PV Performance and Optimization of PV Systems in Shaded Forest Environments
Highlights
- Shading spectra of distinct forest types exhibit significant differences in the 380–680 nm band, with a consistent variation trend above 680 nm.
- Poly-Si PV cells achieve optimal output performance under the shading spectral environments of different forest types in summer, and the designed circuit meets the stable operation requirements.
- This study fills the gap in shading spectra of northern summer arbor forests, explores their impacts on PV output characteristics, and provides a basis for selecting Poly-Si as forest PV materials.
- A scheme integrating PV material selection and energy harvesting circuits is proposed, offering a novel approach to addressing the power supply challenge of forest monitoring sensors.
Abstract
1. Introduction
2. Materials and Methods
2.1. PV Panels
2.2. Mathematical Model of PV Cells
2.3. Power Management Module
2.4. Experimental Setup and Uncertainty Analysis
3. Results and Discussion
3.1. Analysis of Light Environments in Different Forest Types
3.2. Study on Spectral PV Response Mechanisms of Different Forest Types
3.3. Forest Canopy Low-Irradiance PV Response Characteristics
3.4. Verification Experiment of Micro-Energy Collection Circuit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Ali, S.; Olabi, A.G.; Mahmoud, M. A review of solar photovoltaic technologies: Developments, challenges, and future perspectives. Energy Convers. Manag. X 2025, 27, 101057. [Google Scholar] [CrossRef]
- Ibrahim, Y. Wireless sensor networks for environmental monitoring: Design and implementation. Int. J. Eng. Fields 2024, 2, 21–27. [Google Scholar]
- Guo, W.; Healy, W.; Zhou, M. Power supply issues for wireless sensor networks: A review. Int. J. Intell. Control Syst. 2014, 19, 15–23. [Google Scholar]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Netw. 2019, 94, 101966. [Google Scholar] [CrossRef]
- Augspurger, C.K.; Salk, C.F. Understory plants evade shading in a temperate deciduous forest amid climate variability by shifting phenology in synchrony with canopy trees. PLoS ONE 2024, 19, e0306023. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Li, Y.; He, J.A.; Lu, L.; Xu, J.; Wang, H.; Ye, S. The long-term effects of thinning and mixing on species and structural diversity of Chinese fir plantations. New For. 2021, 52, 285–302. [Google Scholar] [CrossRef]
- Fotis, A.T.; Curtis, P.S. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Tree Physiol. 2017, 37, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Tani, T. Output variation of photovoltaic modules with environmental factors—I. The effect of spectral solar radiation on photovoltaic module output. Sol. Energy 1995, 55, 463–468. [Google Scholar] [CrossRef]
- Liang, H.; Wang, F.; Yang, L.; Cheng, Z.; Shuai, Y.; Tan, H. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renew. Sustain. Energy Rev. 2021, 141, 110785. [Google Scholar] [CrossRef]
- Makrides, G.; Zinsser, B.; Norton, M.; Georghiou, G.E. Performance of photovoltaics under actual operating conditions. In Third Generation Photovoltaics; InTech: Rijeka, Croatia, 2012; pp. 201–232. [Google Scholar]
- Rashid, M.; Yousif, M.; Rashid, Z.; Muhammad, A.; Altaf, M.; Mustafa, A. Effect of dust accumulation on the performance of photovoltaic modules for different climate regions. Heliyon 2023, 9, e23069. [Google Scholar] [CrossRef]
- Alshareef, M.J. A comprehensive review of the soiling effects on PV module performance. IEEE Access 2023, 11, 134623–134651. [Google Scholar] [CrossRef]
- Ameur, A.; Berrada, A.; Bouaichi, A.; Loudiyi, K. Long-term performance and degradation analysis of different PV modules under temperate climate. Renew. Energy 2022, 188, 37–51. [Google Scholar] [CrossRef]
- Saidan, M.; Albaali, A.G.; Alasis, E.; Kaldellis, J.K. Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment. Renew. Energy 2016, 92, 499–505. [Google Scholar] [CrossRef]
- Alshayeb, M.J.; Chang, J.D. Variations of PV panel performance installed over a vegetated roof and a conventional black roof. Energies 2018, 11, 1110. [Google Scholar] [CrossRef]
- CCheng, Y.; Peng, Y.; Jen, A.K.-Y.; Yip, H.-L. Development and challenges of metal halide perovskite solar modules. Sol. RRL 2022, 6, 2100545. [Google Scholar] [CrossRef]
- Pecunia, V.; Silva, S.R.P.; Phillips, J.D.; Artegiani, E.; Romeo, A.; Shim, H.; Park, J.; Kim, J.H.; Yun, J.S.; Welch, G.C.; et al. Roadmap on energy harvesting materials. J. Phys. Mater. 2023, 6, 042501. [Google Scholar] [CrossRef]
- Mathews, I.; Kantareddy, S.N.; Buonassisi, T.; Peters, I.M. Technology and Market Perspective for Indoor Photovoltaic Cells. Joule 2019, 3, 1415–1426. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, G.; Xue, Y.; Xia, D.; Wang, J.; Hu, Z. Improvement of maximum power point tracking in photovoltaic arrays in different environments using hybrid algorithms. Optoelectron. Lett. 2024, 20, 28–34. [Google Scholar] [CrossRef]
- Richardson, A.D.; O’Keefe, J. Phenological differences between understory and overstory: A case study using the long-term Harvard Forest records. In Phenology of Ecosystem Processes: Applications in Global Change Research; Springer: Berlin/Heidelberg, Germany, 2009; pp. 87–117. [Google Scholar]
- Chazdon, R.L.; Pearcy, R.W. The importance of sunflecks for forest understory plants. BioScience 1991, 41, 760–766. [Google Scholar] [CrossRef]
- Hammam, T.M.; Alhalaili, B.; Abd El-sadek, M.; Abuelwafa, A.A. Effect of protective layer on the performance of monocrystalline silicon cell for indoor light harvesting. Sensors 2023, 23, 7995. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites. Energy 2014, 67, 435–443. [Google Scholar] [CrossRef]
- Dimassi, W.; Derbali, L.; Bouaïcha, M.; Bessaïs, B.; Ezzaouia, H. Two-dimensional LBIC and internal-quantum-efficiency investigations of grooved grain boundaries in multicrystalline silicon solar cells. Sol. Energy 2011, 85, 350–355. [Google Scholar] [CrossRef]
- Li, X.; Deng, Z.; Ma, Z.; Jiang, Y.; Du, C.; Jia, H.; Wang, W.; Chen, H. Demonstration of SWIR silicon-based photodetection by using Thin ITO/Au/Au nanoparticles/n-Si structure. Sensors 2022, 22, 4536. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Solas, A.; Micheli, L.; Almonacid, F.; Fernandez, E.F. Optical degradation impact on the spectral performance of photovoltaic technology. arXiv 2021, arXiv:2103.04639. [Google Scholar] [CrossRef]
- Parker, G.G.; Lefsky, M.A.; Harding, D.J. Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements. Remote Sens. Environ. 2001, 76, 298–309. [Google Scholar] [CrossRef]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Xu, S.; Liu, Y.; Zhang, L.; Zhao, Z.; Hu, Z.; Shan, H. A low-voltage self-starting boost converter using MPPT with pulse multiplication for energy harvesting. Electronics 2024, 13, 1713. [Google Scholar] [CrossRef]
- Akpinar, E.K. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers. Manag. 2010, 51, 2407–2418. [Google Scholar] [CrossRef]
- Fligge, M.; Solanki, S.K.; Pap, J.M.; Fröhlich, C.; Wehrli, C. Variations of solar spectral irradiance from near UV to the infrared—Measurements and results. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1479–1487. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- He, Q.; Fang, Z.; Shoshanim, O.; Brown, S.S.; Rudich, Y. Scattering and absorption cross sections of atmospheric gases in the ultraviolet–visible wavelength range (307–725 nm). Atmos. Chem. Phys. 2021, 21, 14927–14940. [Google Scholar] [CrossRef]
- Montanes-Rodriguez, P.; Pallé, E.; Goode, P.; Hickey, J.; Koonin, S. Globally integrated measurements of the Earth’s visible spectral albedo. Astrophys. J. 2005, 629, 1175. [Google Scholar] [CrossRef]
- Sun, X.; Guo, H.; Zhang, Y.; Li, X.; Cao, Z. Effects of carbon impurity in monocrystalline silicon on electrical properties and the mechanism analysis of PIN rectifier diodes. IEEE Access 2021, 9, 22868–22875. [Google Scholar] [CrossRef]
- Xu, K.; Ye, H. Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves. Sci. Rep. 2023, 13, 4694. [Google Scholar] [CrossRef] [PubMed]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens. Environ. 2000, 74, 582–595. [Google Scholar] [CrossRef]
- Al-Bashir, A.; Al-Dweri, M.; AlGhandoor, A.; Hammad, B.; AlKouz, W. Analysis of effects of solar irradiance, cell temperature and wind speed on photovoltaic systems performance. Int. J. Energy Econ. Policy 2020, 10, 353–359. [Google Scholar] [CrossRef]
- Ghazi, S.; Ip, K. The effect of weather conditions on the efficiency of PV panels in the southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Bhavani, M.; Vijaybhaskar Reddy, K.; Mahesh, K.; Saravanan, S. Impact of variation of solar irradiance and temperature on the inverter output for grid connected photo voltaic (PV) system at different climate conditions. Mater. Today Proc. 2023, 80, 2101–2108. [Google Scholar] [CrossRef]
- Ben Rabha, M.; El Haj, A.; Mannai, A.; Choubani, K.; Almeshaal, M.A.; Dimassi, W. Enhancement of optoelectronic properties of multicrystalline silicon using Al-NPs and SiNx layer. Crystals 2025, 15, 381. [Google Scholar] [CrossRef]
- Rabha, M.B.; Dimassi, W.; Bouaïcha, M.; Ezzaouia, H.; Bessais, B. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells. Sol. Energy 2009, 83, 721–725. [Google Scholar] [CrossRef]
- Almeshaal, M.A.; Abdouli, B.; Choubani, K.; Khezami, L.; Rabha, M.B. Study of porous silicon layer effect in optoelectronics properties of multi-crystalline silicon for photovoltaic applications. Silicon 2023, 15, 6025–6032. [Google Scholar] [CrossRef]
- Liu, S.; Xia, M.; Chen, F.; Lei, Q. Analysis of the characterization of impurities and defects in cast monocrystalline silicon with shadows. Silicon 2023, 15, 1393–1400. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, S.K.; Kumar, S.; Jadoun, V.K. Performance analysis of partially shaded high-efficiency mono PERC/mono crystalline PV module under indoor and environmental conditions. Sci. Rep. 2024, 14, 21587. [Google Scholar] [CrossRef] [PubMed]










| Parameter Name | Mono-Si PV | Poly-Si PV | a-Si PV |
|---|---|---|---|
| Open-circuit voltage (Voc, V) | 2.4 | 2.4 | 2.8 |
| Short-circuit current (Isc, mA) | 176 | 143 | 42 |
| Maximum power voltage (Vmpp, V) | 2 | 2 | 2.2 |
| Maximum power current (Impp, mA) | 160 | 130 | 30 |
| Maximum power (Pmpp) | 320 | 260 | 66 |
| Fill factor (FF) | 0.75–0.84 | 0.70–0.78 | 0.47–0.67 |
| Conversion efficiency (η, %) | 25 | 17.5 | 7 |
| Temperature coefficient (TC, %/°C) | −0.40 | −0.38 | −0.25 |
| Para | Meaning | Para | Meaning |
|---|---|---|---|
| PV cell output current | PN junction curve constant | ||
| PV cell short-circuit current | Boltzmann constant (1.38 × 10−23 J/K) | ||
| Diode current | Temperature of PV cell | ||
| PN junction leakage current | Output voltage | ||
| PN junction reverse saturation current | PV cell series resistance | ||
| Electron charge (1.6 × 10−19 C) | PV cell shunt resistance | ||
| PN junction barrier height | Crystal diode |
| Instrument Name | Model Number | Range and Accuracy |
|---|---|---|
| Spectral irradiance sensor | B42B5K10234NBPD | 340–1020 nm, 0–3000 W/m2, ±4% |
| Temperature sensor | SW-6056 | 0–45 °C, ±1 °C |
| Digital multimeter (voltage) | Fluke 15B MAX01 | 0.1 mV–1000 V, ±(0.5% + 3) |
| Digital multimeter (current) | UT39E+ | 0.1 μA–20 A, ±(0.5% + 5) |
| Rotary resistance box | ZX21 | 0.1–99,999 Ω, ±1% |
| Tree Species | Environmental Conditions | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 |
|---|---|---|---|---|---|---|
| Sunny Transmitted Light | 87.49 | 66.56 | 233.49 | 280.89 | 88.43 | |
| P. can | Sunny Shaded Light | 13.64 | 16.56 | 16.40 | 17.54 | 17.74 |
| Overcast Shaded Light | 9.43 | 11.51 | 14.35 | 13.61 | 11.92 | |
| Sunny Transmitted Light | 58.53 | 64.46 | 348.93 | 124.80 | 84.92 | |
| P. occ | Sunny Shaded Light | 11.56 | 10.97 | 11.66 | 10.90 | 11.95 |
| Overcast Shaded Light | 8.81 | 6.60 | 7.10 | 7.42 | 6.74 | |
| Sunny Transmitted Light | 135.00 | 268.07 | 109.04 | 167.45 | 149.14 | |
| J. rig | Sunny Shaded Light | 12.16 | 14.24 | 12.94 | 12.37 | 12.20 |
| Overcast Shaded Light | 6.43 | 6.36 | 6.63 | 5.50 | 5.59 | |
| Sunny Transmitted Light | 85.28 | 155.82 | 226.41 | 28.01 | 61.25 | |
| P. tab | Sunny Shaded Light | 12.36 | 9.40 | 10.99 | 10.50 | 12.09 |
| Overcast Shaded Light | 4.55 | 5.21 | 5.26 | 6.51 | 5.86 | |
| Sunny Transmitted Light | 45.83 | 102.11 | 48.23 | 339.64 | 204.58 | |
| E. ulm | Sunny Shaded Light | 6.53 | 3.65 | 4.15 | 5.45 | 5.10 |
| Overcast Shaded Light | 1.77 | 5.51 | 4.82 | 5.77 | 4.69 |
| Tree Species | Solar Cell Type | R (Ω) | U (V) | I (A) | Pmax (mW) |
|---|---|---|---|---|---|
| Mono-Si PV | 400 | 1.532 | 3.860 | 5.914 | |
| P. can | Poly-Si PV | 400 | 1.787 | 4.130 | 7.380 |
| a-Si PV | 4000 | 1.705 | 0.420 | 0.716 | |
| Mono-Si PV | 300 | 1.564 | 4.050 | 6.334 | |
| P. occ | Poly-Si PV | 300 | 1.701 | 4.400 | 7.484 |
| a-Si PV | 5000 | 1.705 | 0.330 | 0.563 | |
| Mono-Si PV | 200 | 1.528 | 5.360 | 8.190 | |
| J. rig | Poly-Si PV | 300 | 1.543 | 4.990 | 7.700 |
| a-Si PV | 5000 | 1.523 | 0.330 | 0.503 | |
| Mono-Si PV | 300 | 1.683 | 4.350 | 7.321 | |
| P. tab | Poly-Si PV | 300 | 1.654 | 5.170 | 8.551 |
| a-Si PV | 5000 | 1.567 | 0.320 | 0.501 | |
| Mono-Si PV | 200 | 1.557 | 5.380 | 8.377 | |
| E. ulm | Poly-Si PV | 200 | 1.566 | 6.090 | 9.537 |
| a-Si PV | 7000 | 1.802 | 0.260 | 0.469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; He, Y.; Ga, L.; Xu, D.; Bai, X.; Li, W. Impact Mechanism of Spectral Differentiation on PV Performance and Optimization of PV Systems in Shaded Forest Environments. Sensors 2025, 25, 7373. https://doi.org/10.3390/s25237373
Yang D, He Y, Ga L, Xu D, Bai X, Li W. Impact Mechanism of Spectral Differentiation on PV Performance and Optimization of PV Systems in Shaded Forest Environments. Sensors. 2025; 25(23):7373. https://doi.org/10.3390/s25237373
Chicago/Turabian StyleYang, Dongxiao, Yuan He, Latai Ga, Daochun Xu, Xiaopeng Bai, and Wenbin Li. 2025. "Impact Mechanism of Spectral Differentiation on PV Performance and Optimization of PV Systems in Shaded Forest Environments" Sensors 25, no. 23: 7373. https://doi.org/10.3390/s25237373
APA StyleYang, D., He, Y., Ga, L., Xu, D., Bai, X., & Li, W. (2025). Impact Mechanism of Spectral Differentiation on PV Performance and Optimization of PV Systems in Shaded Forest Environments. Sensors, 25(23), 7373. https://doi.org/10.3390/s25237373

