Mie Voids for Single-Molecule Fluorescence Enhancement in Wavelength-Scale Detection Volumes
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of Mie Voids
2.2. Single-Molecule Detection Setup
3. Results
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cordes, T.; Blum, S.A. Opportunities and Challenges in Single-Molecule and Single-Particle Fluorescence Microscopy for Mechanistic Studies of Chemical Reactions. Nat. Chem. 2013, 5, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Moerner, W.; Fromm, D.P. Methods of Single-Molecule Fluorescence Spectroscopy and Microscopy. Rev. Sci. Instrum. 2003, 74, 3597–3619. [Google Scholar] [CrossRef]
- Sahl, S.J.; Hell, S.W.; Jakobs, S. Fluorescence Nanoscopy in Cell Biology. Nat. Rev. Mol. Cell Biol. 2017, 18, 685–701. [Google Scholar] [CrossRef]
- Hwang, J.; Banerjee, M.; Venable, A.S.; Walden, Z.; Jolly, J.; Zimmerman, C.; Adkisson, E.; Xiao, Q. Quantitation of Low Abundant Soluble Biomarkers Using High Sensitivity Single Molecule Counting Technology. Methods 2019, 158, 69–76. [Google Scholar] [CrossRef]
- Patra, S.; Claude, J.-B.; Naubron, J.-V.; Wenger, J. Fast Interaction Dynamics of G-Quadruplex and RGG-Rich Peptides Unveiled in Zero-Mode Waveguides. Nucleic Acids Res. 2021, 49, 12348–12357. [Google Scholar] [CrossRef]
- Chowdhury, A.; Nettels, D.; Schuler, B. Interaction Dynamics of Intrinsically Disordered Proteins from Single-Molecule Spectroscopy. Annu. Rev. Biophys. 2023, 52, 433–462. [Google Scholar] [CrossRef]
- Du Nguyen, D.; Shuklin, F.; Barulina, E.; Albitskaya, H.; Novikov, S.; Chernov, A.I.; Kim, I.; Barulin, A. Recent Advances in Dynamic Single-Molecule Analysis Platforms for Diagnostics: Advantages over Bulk Assays and Miniaturization Approaches. Biosens. Bioelectron. 2025, 278, 117361. [Google Scholar] [CrossRef]
- Brown, J.W.P.; Bauer, A.; Polinkovsky, M.E.; Bhumkar, A.; Hunter, D.J.B.; Gaus, K.; Sierecki, E.; Gambin, Y. Single-Molecule Detection on a Portable 3D-Printed Microscope. Nat. Commun. 2019, 10, 5662. [Google Scholar] [CrossRef]
- Webb, W.W. Fluorescence Correlation Spectroscopy: Inception, Biophysical Experimentations, and Prospectus. Appl. Opt. 2001, 40, 3969–3983. [Google Scholar] [CrossRef] [PubMed]
- Grabenhorst, L.; Sturzenegger, F.; Hasler, M.; Schuler, B.; Tinnefeld, P. Single-Molecule FRET at 10 MHz Count Rates. J. Am. Chem. Soc. 2024, 146, 3539–3544. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Roy, P.; Claude, J.-B.; Wenger, J. Achieving High Temporal Resolution in Single-Molecule Fluorescence Techniques Using Plasmonic Nanoantennas. Adv. Opt. Mater. 2023, 11, 2300168. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical Microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. High-Q Photonic Nanocavity in a Two-Dimensional Photonic Crystal. Nature 2003, 425, 944–947. [Google Scholar] [CrossRef]
- Yu, D.; Humar, M.; Meserve, K.; Bailey, R.C.; Chormaic, S.N.; Vollmer, F. Whispering-Gallery-Mode Sensors for Biological and Physical Sensing. Nat. Rev. Methods Primers 2021, 1, 83. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, M. Nanoplasmonic Waveguides: Towards Applications in Integrated Nanophotonic Circuits. Light Sci. Appl. 2015, 4, e294. [Google Scholar] [CrossRef]
- Chang, D.E.; Sørensen, A.S.; Hemmer, P.; Lukin, M. Strong Coupling of Single Emitters to Surface Plasmons. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 76, 035420. [Google Scholar] [CrossRef]
- Punj, D.; Mivelle, M.; Moparthi, S.B.; Van Zanten, T.S.; Rigneault, H.; Van Hulst, N.F.; García-Parajó, M.F.; Wenger, J. A Plasmonic ‘Antenna-in-Box’ Platform for Enhanced Single-Molecule Analysis at Micromolar Concentrations. Nat. Nanotechnol. 2013, 8, 512–516. [Google Scholar] [CrossRef]
- Baibakov, M.; Barulin, A.; Roy, P.; Claude, J.-B.; Patra, S.; Wenger, J. Zero-Mode Waveguides Can Be Made Better: Fluorescence Enhancement with Rectangular Aluminum Nanoapertures from the Visible to the Deep Ultraviolet. Nanoscale Adv. 2020, 2, 4153–4160. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Deutsch, B.; Novotny, L. Optical Antennas. Adv. Opt. Photonics 2009, 1, 438–483. [Google Scholar] [CrossRef]
- Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett. 2007, 98, 266802. [Google Scholar] [CrossRef]
- Novotny, L.; Van Hulst, N. Antennas for Light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Taminiau, T.; Stefani, F.; Segerink, F.B.; Van Hulst, N. Optical Antennas Direct Single-Molecule Emission. Nat. Photonics 2008, 2, 234–237. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the Mechanisms of Large Purcell Enhancement in Plasmonic Nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef]
- Flauraud, V.; Regmi, R.; Winkler, P.M.; Alexander, D.T.; Rigneault, H.; Van Hulst, N.F.; García-Parajo, M.F.; Wenger, J.; Brugger, J. In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement. Nano Lett. 2017, 17, 1703–1710. [Google Scholar] [CrossRef]
- Nüesch, M.F.; Ivanovic, M.T.; Claude, J.-B.; Nettels, D.; Best, R.B.; Wenger, J.; Schuler, B. Single-Molecule Detection of Ultrafast Biomolecular Dynamics with Nanophotonics. J. Am. Chem. Soc. 2021, 144, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Barulin, A.; Claude, J.-B.; Patra, S.; Bonod, N.; Wenger, J. Deep Ultraviolet Plasmonic Enhancement of Single Protein Autofluorescence in Zero-Mode Waveguides. Nano Lett. 2019, 19, 7434–7442. [Google Scholar] [CrossRef] [PubMed]
- Baibakov, M.; Patra, S.; Claude, J.-B.; Moreau, A.; Lumeau, J.; Wenger, J. Extending Single-Molecule Forster Resonance Energy Transfer (FRET) Range beyond 10 Nanometers in Zero-Mode Waveguides. ACS Nano 2019, 13, 8469–8480. [Google Scholar] [CrossRef] [PubMed]
- Regmi, R.; Berthelot, J.; Winkler, P.M.; Mivelle, M.; Proust, J.; Bedu, F.; Ozerov, I.; Begou, T.; Lumeau, J.; Rigneault, H. All-Dielectric Silicon Nanogap Antennas to Enhance the Fluorescence of Single Molecules. Nano Lett. 2016, 16, 5143–5151. [Google Scholar] [CrossRef]
- Jiang, Q.; Roy, P.; Claude, J.-B.; Wenger, J. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. Nano Lett. 2021, 21, 7030–7036. [Google Scholar] [CrossRef]
- Gao, Q.; Zang, P.; Li, J.; Zhang, W.; Zhang, Z.; Li, C.; Yao, J.; Li, C.; Yang, Q.; Li, S.; et al. Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides. ACS Appl. Mater. Interfaces 2023, 15, 49511–49526. [Google Scholar] [CrossRef]
- Barulin, A.; Roy, P.; Claude, J.-B.; Wenger, J. Ultraviolet Optical Horn Antennas for Label-Free Detection of Single Proteins. Nat. Commun. 2022, 13, 1842. [Google Scholar] [CrossRef]
- Zakomirnyi, V.I.; Moroz, A.; Bhargava, R.; Rasskazov, I.L. Large Fluorescence Enhancement via Lossless All-Dielectric Spherical Mesocavities. ACS Nano 2024, 18, 1621–1628. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Park, Y.-S.; Yin, X.; Zhang, X. Fluorescence Enhancement by a Two-Dimensional Dielectric Annular Bragg Resonant Cavity. Opt. Express 2010, 18, 25029–25034. [Google Scholar] [CrossRef]
- Aouani, H.; Mahboub, O.; Bonod, N.; Devaux, E.; Popov, E.; Rigneault, H.; Ebbesen, T.W.; Wenger, J. Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations. Nano Lett. 2011, 11, 637–644. [Google Scholar] [CrossRef]
- Skolrood, L.; Wang, Y.; Zhang, S.; Wei, Q. Single-Molecule and Particle Detection on True Portable Microscopy Platforms. Sens. Actuators Rep. 2022, 4, 100063. [Google Scholar] [CrossRef]
- Macchia, E.; Torricelli, F.; Caputo, M.; Sarcina, L.; Scandurra, C.; Bollella, P.; Catacchio, M.; Piscitelli, M.; Di Franco, C.; Scamarcio, G. Point-of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. Adv. Mater. 2024, 36, 2309705. [Google Scholar] [CrossRef] [PubMed]
- Macchia, E.; Torricelli, F.; Bollella, P.; Sarcina, L.; Tricase, A.; Di Franco, C.; Osterbacka, R.; Kovacs-Vajna, Z.M.; Scamarcio, G.; Torsi, L. Large-Area Interfaces for Single-Molecule Label-Free Bioelectronic Detection. Chem. Rev. 2022, 122, 4636–4699. [Google Scholar] [CrossRef] [PubMed]
- Sanaee, M.; Sandberg, E.; Ronquist, K.G.; Morrell, J.M.; Widengren, J.; Gallo, K. Coincident Fluorescence-Burst Analysis of the Loading Yields of Exosome-Mimetic Nanovesicles with Fluorescently-Labeled Cargo Molecules. Small 2022, 18, 2106241. [Google Scholar] [CrossRef]
- Silva, A.M.; Lázaro-Ibáñez, E.; Gunnarsson, A.; Dhande, A.; Daaboul, G.; Peacock, B.; Osteikoetxea, X.; Salmond, N.; Friis, K.P.; Shatnyeva, O.; et al. Quantification of Protein Cargo Loading into Engineered Extracellular Vesicles at Single-vesicle and Single-molecule Resolution. J Extracell. Vesicle 2021, 10, e12130. [Google Scholar] [CrossRef]
- Singh, A.; de Roque, P.M.; Calbris, G.; Hugall, J.T.; van Hulst, N.F. Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Nano Lett. 2018, 18, 2538–2544. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, Q.; Canady, T.D.; Barya, P.; Liu, S.; Arogundade, O.H.; Race, C.M.; Che, C.; Wang, X.; Zhou, L.; et al. Photonic Crystal Enhanced Fluorescence Emission and Blinking Suppression for Single Quantum Dot Digital Resolution Biosensing. Nat. Commun. 2022, 13, 4647. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Du, Q.; Png, C.E.; Bai, P. Metal–Dielectric Hybrid Dimer Nanoantenna: Coupling between Surface Plasmons and Dielectric Resonances for Fluorescence Enhancement. J. Phys. Chem. C 2017, 121, 12871–12884. [Google Scholar] [CrossRef]
- Milichko, V.A.; Zuev, D.A.; Baranov, D.G.; Zograf, G.P.; Volodina, K.; Krasilin, A.A.; Mukhin, I.S.; Dmitriev, P.A.; Vinogradov, V.V.; Makarov, S.V. Metal-dielectric Nanocavity for Real-time Tracing Molecular Events with Temperature Feedback. Laser Photonics Rev. 2018, 12, 1700227. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D.C.; Valuckas, V.; Paniagua-Dominguez, R.; Yang, J.K.; Demir, H.V.; Kuznetsov, A.I. Hybrid Dielectric-Plasmonic Nanoantenna with Multiresonances for Subwavelength Photon Sources. ACS Photonics 2023, 10, 582–594. [Google Scholar] [CrossRef]
- Mundy, W.; Roux, J.; Smith, A. Mie Scattering by Spheres in an Absorbing Medium. J. Opt. Soc. Am. 1974, 64, 1593–1597. [Google Scholar] [CrossRef]
- Vanecek, M.; Holoubek, J.; Shah, A. Optical Study of Microvoids, Voids, and Local Inhomogeneities in Amorphous Silicon. Appl. Phys. Lett. 1991, 59, 2237–2239. [Google Scholar] [CrossRef]
- Chen, C.-C. Electromagnetic Resonances of Immersed Dielectric Spheres. IEEE Trans. Antennas Propag. 1998, 46, 1074–1083. [Google Scholar] [CrossRef]
- Hentschel, M.; Koshelev, K.; Sterl, F.; Both, S.; Karst, J.; Shamsafar, L.; Weiss, T.; Kivshar, Y.; Giessen, H. Dielectric Mie Voids: Confining Light in Air. Light Sci. Appl. 2023, 12, 3. [Google Scholar] [CrossRef]
- Ryabkov, E.; Song, M.; Bogdanov, A.A.; Baranov, D.G. Polaritonic Spectra of Optical Mie Voids. arXiv 2025, arXiv:2510.04650. [Google Scholar] [CrossRef]
- Barulin, A.; Roy, P.; Claude, J.-B.; Wenger, J. Purcell Radiative Rate Enhancement of Label-Free Proteins with Ultraviolet Aluminum Plasmonics. J. Phys. D Appl. Phys. 2021, 54, 425101. [Google Scholar] [CrossRef]
- Kristensen, P.T.; Herrmann, K.; Intravaia, F.; Busch, K. Modeling Electromagnetic Resonators Using Quasinormal Modes. Adv. Opt. Photonics 2020, 12, 612–708. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2012; ISBN 1-139-56045-X. [Google Scholar]
- Sauvan, C.; Hugonin, J.-P.; Maksymov, I.S.; Lalanne, P. Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators. Phys. Rev. Lett. 2013, 110, 237401. [Google Scholar] [CrossRef]
- Rempe, G.; Thompson, R.; Kimble, H.J.; Lalezari, R. Measurement of Ultralow Losses in an Optical Interferometer. Opt. Lett. 1992, 17, 363–365. [Google Scholar] [CrossRef]
- Buck, J.; Kimble, H. Optimal Sizes of Dielectric Microspheres for Cavity QED with Strong Coupling. Phys. Rev. A 2003, 67, 033806. [Google Scholar] [CrossRef]
- Painter, O.; Lee, R.; Scherer, A.; Yariv, A.; O’brien, J.; Dapkus, P.; Kim, I. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef]
- Kern, A.M.; Zhang, D.; Brecht, M.; Chizhik, A.I.; Failla, A.V.; Wackenhut, F.; Meixner, A.J. Enhanced Single-Molecule Spectroscopy in Highly Confined Optical Fields: From λ/2-Fabry–Pérot Resonators to Plasmonic Nano-Antennas. Chem. Soc. Rev. 2014, 43, 1263–1286. [Google Scholar] [CrossRef]
- Cambiasso, J.; Grinblat, G.; Li, Y.; Rakovich, A.; Cortés, E.; Maier, S.A. Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas. Nano Lett. 2017, 17, 1219–1225. [Google Scholar] [CrossRef]
- Seok, T.J.; Jamshidi, A.; Eggleston, M.; Wu, M.C. Mass-Producible and Efficient Optical Antennas with CMOS-Fabricated Nanometer-Scale Gap. Opt. Express 2013, 21, 16561–16569. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S.J.; Scherman, O.A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J.J. Single-Molecule Strong Coupling at Room Temperature in Plasmonic Nanocavities. Nature 2016, 535, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Kayyil Veedu, M.; Wenger, J. Breaking the Low Concentration Barrier of Single-Molecule Fluorescence Quantification to the Sub-Picomolar Range. Small Methods 2025, 2401695. [Google Scholar] [CrossRef] [PubMed]
- Barulin, A.; Kim, I. Hyperlens for Capturing Sub-Diffraction Nanoscale Single Molecule Dynamics. Opt. Express 2023, 31, 12162–12174. [Google Scholar] [CrossRef] [PubMed]
- Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W.E. Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna. Nat. Photonics 2009, 3, 654–657. [Google Scholar] [CrossRef]
- Regmi, R.; Winkler, P.M.; Flauraud, V.; Borgman, K.J.; Manzo, C.; Brugger, J.; Rigneault, H.; Wenger, J.; García-Parajo, M.F. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells. Nano Lett. 2017, 17, 6295–6302. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, I.; Shuklin, F.; Ryabkov, E.; Barulina, E.; Petukhov, A.; Baranov, D.G.; Chernov, A.; Barulin, A. Mie Voids for Single-Molecule Fluorescence Enhancement in Wavelength-Scale Detection Volumes. Sensors 2025, 25, 7033. https://doi.org/10.3390/s25227033
Kuznetsov I, Shuklin F, Ryabkov E, Barulina E, Petukhov A, Baranov DG, Chernov A, Barulin A. Mie Voids for Single-Molecule Fluorescence Enhancement in Wavelength-Scale Detection Volumes. Sensors. 2025; 25(22):7033. https://doi.org/10.3390/s25227033
Chicago/Turabian StyleKuznetsov, Ivan, Fedor Shuklin, Evgeny Ryabkov, Elena Barulina, Andrey Petukhov, Denis G. Baranov, Alexander Chernov, and Aleksandr Barulin. 2025. "Mie Voids for Single-Molecule Fluorescence Enhancement in Wavelength-Scale Detection Volumes" Sensors 25, no. 22: 7033. https://doi.org/10.3390/s25227033
APA StyleKuznetsov, I., Shuklin, F., Ryabkov, E., Barulina, E., Petukhov, A., Baranov, D. G., Chernov, A., & Barulin, A. (2025). Mie Voids for Single-Molecule Fluorescence Enhancement in Wavelength-Scale Detection Volumes. Sensors, 25(22), 7033. https://doi.org/10.3390/s25227033

