RF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service
Highlights
- Personal exposure to RF-EMF from Wi-Fi on four international flights.
- Measurement inside an airplane with and without Wi-Fi connection using personal exposimeters.
Abstract
1. Introduction
2. Materials and Methods
2.1. Devices and Studio Microenvironment
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akkam, Y.; Al-Taani, A.A.; Ayasreh, S.; Almutairi, A.; Akkam, N. Correlation of Blood Oxidative Stress Parameters to Indoor Radiofrequency Radiation: A Cross Sectional Study in Jordan. Int. J. Environ. Res. Public Health 2020, 17, 4673. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Thielens, A.; Billah, B.; Redmayne, M.; Abramson, M.J.; Sim, M.R.; Vermeulen, R.; Martens, L.; Joseph, W.; Benke, G. Assessment of Personal Exposure from Radiofrequency-Electromagnetic Fields in Australia and Belgium Using on-Body Calibrated Exposimeters. Environ. Res. 2016, 151, 547–563. [Google Scholar] [CrossRef]
- Birks, L.E.; Struchen, B.; Eeftens, M.; van Wel, L.; Huss, A.; Gajšek, P.; Kheifets, L.; Gallastegi, M.; Dalmau-Bueno, A.; Estarlich, M.; et al. Spatial and Temporal Variability of Personal Environmental Exposure to Radio Frequency Electromagnetic Fields in Children in Europe. Environ. Int. 2018, 117, 204–214. [Google Scholar] [CrossRef]
- Bolte, J.F.B.; Pruppers, M.J.M.; Kamer, J.; Van der Zande, G.; Schipper, C.M.A.; Fleurke, S.R.; Kluwer, T.; Van Kamp, I.; Kromhout, J. The Dutch Exposimeter Study: Developing an Activity Exposure Matrix. Epidemiology 2008, 19, S78–S79. [Google Scholar]
- Dongus, S.; Jalilian, H.; Schurmann, D.; Röösli, M. Health Effects of WiFi Radiation: A Review Based on Systematic Quality Evaluation. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3547–3566. [Google Scholar] [CrossRef]
- Eeftens, M.; Struchen, B.; Birks, L.E.; Cardis, E.; Estarlich, M.; Fernandez, M.F.; Gajšek, P.; Gallastegi, M.; Huss, A.; Kheifets, L.; et al. Personal Exposure to Radio-Frequency Electromagnetic Fields in Europe: Is There a Generation Gap? Environ. Int. 2018, 121, 216–226. [Google Scholar] [CrossRef]
- Frei, P.; Mohler, E.; Neubauer, G.; Theis, G.; Bürgi, A.; Fröhlich, J.; Braun-Fahrländer, C.; Bolte, J.; Egger, M.; Röösli, M. Temporal and Spatial Variability of Personal Exposure to Radio Frequency Electromagnetic Fields. Environ. Res. 2009, 109, 779–785. [Google Scholar] [CrossRef]
- Frei, P.; Mohler, E.; Buergi, A.; Froehlich, J.; Neubauer, G.; Braun-Fahrlaender, C.; Roosli, M. Classification of Personal Exposure to Radio Frequency Electromagnetic Fields (RF-EMF) for Epidemiological Research: Evaluation of Different Exposure Assessment Methods. Environ. Int. 2010, 36, 714–720. [Google Scholar] [CrossRef]
- Gallastegi, M.; Guxens, M.; Jiménez-Zabala, A.; Calvente, I.; Fernández, M.; Birks, L.; Struchen, B.; Vrijheid, M.; Estarlich, M.; Fernández, M.F.; et al. Characterisation of Exposure to Non-Ionising Electromagnetic Fields in the Spanish INMA Birth Cohort: Study Protocol. BMC Public Health 2016, 16, 167. [Google Scholar] [CrossRef]
- Jalilian, H.; Eeftens, M.; Ziaei, M.; Röösli, M. Public Exposure to Radiofrequency Electromagnetic Fields in Everyday Microenvironments: An Updated Systematic Review for Europe. Environ. Res. 2019, 176, 108517. [Google Scholar] [CrossRef]
- Joseph, W.; Verloock, L.; Goeminne, F.; Vermeeren, G.; Martens, L. Assessment of RF Exposures from Emerging Wireless Communication Technologies in Different Environments. Health Phys. 2012, 102, 161–172. [Google Scholar] [CrossRef]
- Kim, B.C.; Kim, W.-K.; Lee, G.-T.; Choi, H.-D.; Kim, N.; Pack, J.-K. Evaluation of Radiofrequency Exposure Levels From Multiple Wireless Installations in Population Dense Areas in Korea. Bioelectromagnetics 2014, 35, 603–606. [Google Scholar] [CrossRef]
- Massardier-Pilonchery, A.; Nerriere, E.; Croidieu, S.; Ndagijimana, F.; Gaudaire, F.; Martinsons, C.; Noe, N.; Hours, M. Assessment of Personal Occupational Exposure to Radiofrequency Electromagnetic Fields in Libraries and Media Libraries, Using Calibrated On-Body Exposimeters. Int. J. Environ. Res. Public Health 2019, 16, 2087. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Arribas, E.; Najera, A. Characterisation of Personal Exposure to Environmental Radiofrequency Electromagnetic Fields in Albacete (Spain) and Assessment of Risk Perception. Environ. Res. 2019, 172, 109–116. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Gonzalez-Rubio, J.; Escobar, I.; Suarez Rodriguez, C.D.P.; Arribas, E. Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments. Int. J. Environ. Res. Public Health 2021, 18, 1857. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Vandenbosch, G.A.E.; Vargas, F.; Caceres-Monllor, D.A.; Arribas, E. Measurement Studies of Personal Exposure to Radiofrequency Electromagnetic Fields: A Systematic Review. Environ. Res. 2023, 218, 114979. [Google Scholar] [CrossRef]
- Röösli, M.; Frei, P.; Bolte, J.; Neubauer, G.; Cardis, E.; Feychting, M.; Gajsek, P.; Heinrich, S.; Joseph, W.; Mann, S.; et al. Conduct of a Personal Radiofrequency Electromagnetic Field Measurement Study: Proposed Study Protocol. Environ. Health 2010, 9, 23–37. [Google Scholar] [CrossRef]
- Roser, K.; Schoeni, A.; Buergi, A.; Röösli, M. Development of an RF-EMF Exposure Surrogate for Epidemiologic Research. Int. J. Environ. Res. Public Health 2015, 12, 5634–5656. [Google Scholar] [CrossRef]
- Thielens, A.; Bockstael, A.; Declerck, S.; Aminzadeh, R.; Aerts, S.; Botteldooren, D.; Martens, L.; Joseph, W. Mobile Phones: A Trade-off between Speech Intelligibility and Exposure to Noise Levels and to Radio-Frequency Electromagnetic Fields. Environ. Res. 2019, 175, 1–10. [Google Scholar] [CrossRef]
- Zeleke, B.M.; Brzozek, C.; Bhatt, C.R.; Abramson, M.J.; Croft, R.J.; Freudenstein, F.; Wiedemann, P.; Benke, G. Personal Exposure to Radio Frequency Electromagnetic Fields among Australian Adults. Int. J. Environ. Res. Public Health 2018, 15, 2234. [Google Scholar] [CrossRef]
- Zeleke, B.M.; Bhatt, C.R.; Brzozek, C.; Abramson, M.J.; Freudenstein, F.; Croft, R.J.; Wiedemann, P.; Benke, G. Radiofrequency Electromagnetic Field Exposure and Risk Perception: A Pilot Experimental Study. Environ. Res. 2019, 170, 493–499. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Martinez-Plaza, A.; Arribas, E. Comparison of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a Spanish University over Three Years. Sci. Total Environ. 2023, 858, 160008. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Arabasi, S.; Al-Taani, H.; Sbeih, S.; Gonzalez-Rubio, J.; Escobar, I.; Arribas, E. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. Int. J. Environ. Res. Public Health 2020, 17, 1898. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Thielens, A.; Arribas, E. Measurements and Analysis of Personal Exposure to Radiofrequency Electromagnetic Fields at Outdoor and Indoor School Buildings: A Case Study at a Spanish School. IEEE Access 2020, 8, 195692–195702. [Google Scholar] [CrossRef]
- Eeftens, M.; Dongus, S.; Burgler, A.; Roosli, M. A Real-World Quality Assessment Study in Six ExpoM-RF Measurement Devices. Environ. Res. 2020, 182, 109049. [Google Scholar] [CrossRef]
- García-Cobos, F.J.; Paniagua-Sánchez, J.M.; Gordillo-Guerrero, A.; Marabel-Calderón, C.; Rufo-Pérez, M.; Jiménez-Barco, A. Personal Exposimeter Coupled to a Drone as a System for Measuring Environmental Electromagnetic Fields. Environ. Res. 2023, 216, 114483. [Google Scholar] [CrossRef]
- Joseph, W.; Aerts, S.; Vandenbossche, M.; Thielens, A.; Martens, L. Drone Based Measurement System for Radiofrequency Exposure Assessment: Drone Based RF Exposure Measurements. Bioelectromagnetics 2016, 37, 195–199. [Google Scholar] [CrossRef]
- Arribas, E.; Escobar, I.; Martinez-Plaza, A.; Adelantado, C.; Ramirez-Vazquez, R. Wi-Fi inside an Airplane. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1254, 012007. [Google Scholar] [CrossRef]
- Bogers, R.P.; van Gils, A.; Clahsen, S.C.S.; Vercruijsse, W.; van Kamp, I.; Baliatsas, C.; Rosmalen, J.G.M.; Bolte, J.F.B. Individual Variation in Temporal Relationships between Exposure to Radiofrequency Electromagnetic Fields and Non-Specific Physical Symptoms: A New Approach in Studying “Electrosensitivity”. Environ. Int. 2018, 121, 297–307. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, J.-H.; Lim, H.; Joo, H.; Yang, H.-S.; Lee, Y.-H.; Eeftens, M.; Struchen, B.; Roosli, M.; Lee, A.-K.; et al. Assessment of Radiofrequency Electromagnetic Field Exposure from Personal Measurements Considering the Body Shadowing Effect in Korean Children and Parents. Sci. Total Environ. 2018, 627, 1544–1551. [Google Scholar] [CrossRef]
- McKenzie, R.J.; Iskra, S.; Knipe, P. Assessment of Radio Frequency Fields in the 2.45 GHz Band Produced by Smart Home Devices. Bioelectromagnetics 2024, 45, 184–192. [Google Scholar] [CrossRef]
- Roser, K.; Schoeni, A.; Struchen, B.; Zahner, M.; Eeftens, M.; Frohlich, J.; Roosli, M. Personal Radiofrequency Electromagnetic Field Exposure Measurements in Swiss Adolescents. Environ. Int. 2017, 99, 303–314. [Google Scholar] [CrossRef]
- Kuehnlein, A.; Heumann, C.; Thomas, S.; Heinrich, S.; Radon, K. Personal Exposure to Mobile Communication Networks and Well-Being in Children-A Statistical Analysis Based on a Functional Approach. Bioelectromagnetics 2009, 30, 261–269. [Google Scholar] [CrossRef]
- Paniagua-Sánchez, J.M.; García-Cobos, F.J.; Rufo-Pérez, M.; Jiménez-Barco, A. Large-Area Mobile Measurement of Outdoor Exposure to Radio Frequencies. Sci. Total Environ. 2023, 877, 162852. [Google Scholar] [CrossRef]
- Thuroczy, G.; Molnar, F.; Janossy, G.; Nagy, N.; Kubinyi, G.; Bakos, J.; Szabo, J. Personal RF Exposimetry in Urban Area. Ann. Telecommun.-Ann Telecommun. 2008, 63, 87–96. [Google Scholar] [CrossRef]
- Viel, J.-F.; Cardis, E.; Moissonnier, M.; de Seze, R.; Hours, M. Radiofrequency Exposure in the French General Population: Band, Time, Location and Activity Variability. Environ. Int. 2009, 35, 1150–1154. [Google Scholar] [CrossRef]
- Van Wel, L.; Vermeulen, R.; van Eijsden, M.; Vrijkotte, T.; Kromhout, H.; Huss, A. Radiofrequency Exposure Levels in Amsterdam Schools. Bioelectromagnetics 2017, 38, 397–400. [Google Scholar] [CrossRef]
- Miao, C.; Wang, J.; Wang, H.; Zhang, J.; Zhou, W.; Liu, S. A Multi-Dimension Measurement Study of a Large Scale Campus WiFi Network. In Proceedings of the 2018 IEEE 43rd Conference on Local Computer Networks (lcn), Chicago, IL, USA, 1–4 October 2018; pp. 351–359. [Google Scholar]
- Guersu, M.; Vilgelm, M.; Zoppi, S.; Kellerer, W. Reliable Co-Existence of 802.15.4e TSCH-Based WSN and Wi-Fi in an Aircraft Cabin. In Proceedings of the 2016 IEEE International Conference on Communications Workshops (icc), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 663–668. [Google Scholar]
- Trifiletti, E.G. High Speed Train and New Technological and Functional Innovations. TeMA 2008, 1, 101–108. [Google Scholar]
- Majumdar, A.K. Demonstration of Successful LEO/GO/Small Satellites/UAV/Airplanes to Ground Optical Communication Experiments: Opening Future Potential for All-Optical Networks Around the World for Global Internet Connectivity; Elsevier Science Bv: Amsterdam, The Netherlands, 2019; pp. 169–205. ISBN 978-0-12-813406-1. [Google Scholar]
- Sierzputowski, R.; Polak, R.; Wojtyra, D.; Laskowski, D. Advanced Protection Methods of Unmanned Aircraft Vehicle against Attack by Radio Techniques. In Proceedings of the Radioelectronic Systems Conference, Jachranka, Poland, 20–21 November 2019; Kaniewski, P., Matuszewski, J., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2020; Volume 11442, p. UNSP 114420Y. [Google Scholar]
- Schmidt, J.F.; Neuhold, D.; Bettstetter, C.; Klaue, J.; Schupke, D. Wireless Connectivity in Airplanes: Challenges and the Case for UWB. IEEE Access 2021, 9, 52913–52925. [Google Scholar] [CrossRef]
- Iberia Wi-Fi Iberia. Available online: https://www.iberia.com/es/a-bordo/wifi/ (accessed on 29 October 2025).
- Michalowska, J.; Pytka, J.; Tofil, A.; Jozwik, J.; Puzio, L.; Krupski, P. The Assessment of Electromagnetic Field in Commonly Used Training Aircrafts. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 22–24 June 2020; pp. 249–254. [Google Scholar]
- Michałowska, J.; Pytka, J.; Tofil, A.; Krupski, P.; Puzio, Ł. Assessment of Training Aircraft Crew Exposure to Electromagnetic Fields Caused by Radio Navigation Devices. Energies 2021, 14, 254. [Google Scholar] [CrossRef]
- Michałowska, J.; Józwik, J.; Tofil, A. Monitoring of the Intensity of the Electromagnetic Field during the Aircraft Operation in the Field of High Frequencies. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Terin, Italy, 19–21 June 2019; pp. 366–370. [Google Scholar]
- Celaya-Echarri, M.; Azpilicueta, L.; Rodríguez-Corbo, F.A.; Lopez-Iturri, P.; Shubair, R.M.; Ramos, V.; Falcone, F. 5G Spatial Modeling of Personal RF-EMF Assessment Within Aircrafts Cabin Environments. IEEE Access 2022, 10, 78860–78874. [Google Scholar] [CrossRef]
- Pall, M.L. Wi-Fi Is an Important Threat to Human Health. Environ. Res. 2018, 164, 405–416. [Google Scholar] [CrossRef]
- Arribas, E.; Ramirez-Vazquez, R.; Escobar, I. Comment on “Wi-Fi Is an Important Threat to Human Health.”. Environ. Res. 2018, 167, 639. [Google Scholar] [CrossRef]
- MVG. EME Spy Evolution|MVG. Available online: https://www.mvg-world.com/en/news/eme-spy-evolution-a-highly-customizable-exposimeter (accessed on 30 October 2025).
- SATIMO; TEMSYSTEM. M.V.G. EME SPY Evolution/EME SPY 140. Available online: https://www.temsystem.es/ (accessed on 29 October 2025).
- Najera, A.; Ramirez-Vazquez, R.; Arribas, E.; Gonzalez-Rubio, J. Comparison of Statistic Methods for Censored Personal Exposure to RF-EMF Data. Environ. Monit. Assess. 2020, 192, 77. [Google Scholar] [CrossRef]
- ICNIRP. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Ramirez-Vazquez, R.; Escobar, I.; Franco, T.; Arribas, E. Physical Units to Report Intensity of Electromagnetic Wave. Environ. Res. 2022, 204, 112341. [Google Scholar] [CrossRef]
- Paniagua, J.M.; Rufo, M.; Jimenez, A.; Antolin, A. Dimensionless Coefficients for Assessing Human Exposure to Radio-Frequency Electromagnetic Fields Indoors and Outdoors in Urban Areas. Environ. Res. 2020, 183, 109188. [Google Scholar] [CrossRef]
- Justavino Castillo, R.A.; Gruenheid, R.; Bauch, G.; Wolff, F.; von der Heide, S. Communication Analysis Between an Airborne Mobile User and a Terrestrial Mobile Network. IEEE Trans. Veh. Technol. 2018, 67, 3457–3465. [Google Scholar] [CrossRef]








| Microenvironment | Outbound Flight | Microenvironment | Return Flight | ||
|---|---|---|---|---|---|
| 2.4 GHz Wi-Fi (µW/m2) | 5.85 GHz Wi-Fi (µW/m2) | 2.4 GHz Wi-Fi (µW/m2) | 5.85 GHz Wi-Fi (µW/m2) | ||
| Madrid airport | 313 | 343 | CDMX airport | 451 | 110 |
| inside the airplane | 115 | 28.2 | inside the airplane | 160 | 46.6 |
| taking off | 319 | 305 | taking off | 126 | 12.9 |
| flying | 93.9 | 46.4 | flying | 26.7 | 9.87 |
| landing | 330 | 51.4 | landing | 76.2 | 17.6 |
| inside the airplane | 78.5 | 94.8 | inside the airplane | 45.2 | 23.6 |
| CDMX airport | 442 | 297 | Madrid airport | 445 | 96.6 |
| Microenvironment | Outbound Flight | Microenvironment | Return Flight | ||
|---|---|---|---|---|---|
| 2.4 GHz Wi-Fi (µW/m2) | 5.85 GHz Wi-Fi (µW/m2) | 2.4 GHz Wi-Fi (µW/m2) | 5.85 GHz Wi-Fi (µW/m2) | ||
| inside the airplane (Madrid) | 6.28 | 11.6 | inside the airplane (Brussels) | 7.73 | 8.50 |
| taking off | 10.2 | 2.39 | taking off | 6.87 | 3.32 |
| flying | 7.29 | 2.40 | flying | 3.24 | 1.23 |
| landing | 5.90 | 5.05 | landing | 3.19 | 2.38 |
| inside the airplane (Brussels) | 5.83 | 10.2 | inside the airplane (Madrid) | 4.85 | 9.28 |
| Location and Publication | Intensity of Electromagnetic Wave in Some Microenvironments from Wi-Fi Band (in µW/m2) | |
|---|---|---|
| Minimum | Maximum | |
| Albacete (with volunteers) [14] | 3.90 | 86.9 |
| Albacete (school building: inside and outside) [24] | 0.610 | 121 |
| Jordan (University area) [23] | 1.41 | 385 |
| Mexico (with volunteers) [15] | 93.3 | 500 |
| Albacete (university building: inside a professor’s office and classroom with students) [22] | 0.530 | 205 |
| Cáceres (inside a house) [56] | 0.0332 | 58.1 |
| Inside the airplane flying (with internet service), this study | 9.87 | 93.9 |
| Inside the airplane flying (without internet service), this study | 1.23 | 7.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arribas, E.; Escobar, I.; Martinez-Plaza, A.; Rufo-Pérez, M.; Jimenez-Barco, A.; Paniagua-Sánchez, J.M.; Marín, P.; Ramirez-Vazquez, R. RF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service. Sensors 2025, 25, 6710. https://doi.org/10.3390/s25216710
Arribas E, Escobar I, Martinez-Plaza A, Rufo-Pérez M, Jimenez-Barco A, Paniagua-Sánchez JM, Marín P, Ramirez-Vazquez R. RF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service. Sensors. 2025; 25(21):6710. https://doi.org/10.3390/s25216710
Chicago/Turabian StyleArribas, Enrique, Isabel Escobar, Antonio Martinez-Plaza, Montaña Rufo-Pérez, Antonio Jimenez-Barco, Jesús M. Paniagua-Sánchez, Pilar Marín, and Raquel Ramirez-Vazquez. 2025. "RF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service" Sensors 25, no. 21: 6710. https://doi.org/10.3390/s25216710
APA StyleArribas, E., Escobar, I., Martinez-Plaza, A., Rufo-Pérez, M., Jimenez-Barco, A., Paniagua-Sánchez, J. M., Marín, P., & Ramirez-Vazquez, R. (2025). RF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service. Sensors, 25(21), 6710. https://doi.org/10.3390/s25216710

