Fine-Grained Personalized Data Aggregation Scheme with High Quality and Privacy Protection
Abstract
1. Introduction
- (1)
- A fine-grained personalized aggregation scheme is presented that combines truth discovery with Paillier aggregate-only decryption; the FN–CSP distributed structure protects user data and locations while supporting efficient encrypted aggregation.
- (2)
- The framework estimates each user’s contribution for each task, enabling fine-grained rewards aligned with task-level reliability and thereby promoting sustained high-quality participation.
- (3)
- Experiments on real datasets demonstrate accurate aggregation under privacy constraints, with fast, stable convergence and predictable scalability across users, tasks, and key sizes.
2. Preliminaries
2.1. Truth Discovery
| Algorithm 1: Truth Discovery |
| Inputs. Task set with ; user pool ; per-task user sets with ; claims ; distance ; tolerance ; maximum rounds ; stability constant . Outputs. Ground truths and weights . Initialization. For each , set the initial truth to the sample mean of ; set for all . Repeat for until the stopping rule in (5) is satisfied or :
|
2.2. Paillier Homomorphic Encryption
2.2.1. The Basic Principle of Paillier Encryption
2.2.2. Homomorphism Property
3. Methods
3.1. Algorithm Framework
3.2. Threat Model
3.3. Design Details
3.3.1. Initial Stage
3.3.2. Iterative Stage
4. Experimentation
4.1. User Weight
4.2. User Reward
4.3. Aggregation Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MCS | Mobile Crowd Sensing |
| TA | Trust Authority |
| CSP | Cloud Service Platform |
| FNs | Fog Nodes |
References
- Dongare, S.; Ortiz, A.; Klein, A. Deep reinforcement learning for task allocation in energy harvesting mobile crowdsensing. In Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 269–274. [Google Scholar]
- Flores-Martin, D.; Laso, S.; Berrocal, J.; Murillo, J.M. Towards digital health: Integrating federated learning and crowdsensing through the Contigo app. SoftwareX 2024, 8, 101885. [Google Scholar] [CrossRef]
- Qaraqe, M.; Elzein, A.; Basaran, E.; Yang, Y.; Varghese, E.B.; Costandi, W.; Rizk, J.; Alam, N. PublicVision: A secure smart surveillance system for crowd behavior recognition. IEEE Access 2024, 12, 26474–26491. [Google Scholar] [CrossRef]
- Xue, J.; Xu, Y.; Wu, W.; Zhang, T.; Shen, Q.; Zhou, H.; Zhuang, W. Sparse mobile crowdsensing for cost-effective traffic state estimation with spatio–temporal transformer graph neural network. IEEE Internet Things J. 2024, 11, 16227–16242. [Google Scholar] [CrossRef]
- Alhazemi, F. Sequential Clustering Phases for Environmental Noise Level Monitoring on a Mobile Crowd Sourcing/Sensing Platform. Sensors 2025, 25, 1601. [Google Scholar] [CrossRef]
- El Hafyani, H.; Abboud, M.; Zuo, J.; Zeitouni, K.; Taher, Y.; Chaix, B.; Wang, L. Learning the micro-environment from rich trajectories in the context of mobile crowd sensing: Application to air quality monitoring. Geoinformatica 2024, 28, 177–220. [Google Scholar] [CrossRef]
- Wang, H.; Tao, J.; Gao, Y.; Chi, D.; Zhu, Y. A Two-Way Auction Approach Toward Data Quality Incentive Mechanisms for Mobile Crowdsensing. IEEE Trans. Netw. Serv. Manag. 2025, 22, 4842–4855. [Google Scholar] [CrossRef]
- Jiao, J.; Xia, Z. SPPM: A Stackelberg Game-Based Personalized Privacy-Preserving Model in Mobile Crowdsensing Systems. In Proceedings of the International Conference on Applied Cryptography and Network Security, Munich, Germany, 23–26 June 2025; pp. 277–305. [Google Scholar]
- Zhang, J.; Chen, P.; Yang, X.; Wu, H.; Li, W. An Optimal Reverse Affine Maximizer Auction Mechanism for Task Allocation in Mobile Crowdsensing. IEEE Trans. Mob. Comput. 2025, 24, 7475–7488. [Google Scholar] [CrossRef]
- Wu, L.; Xie, W.; Tan, W.; Wang, T.; Song, H.H.; Liu, A. RDPP-TD: Reputation and Data Privacy-Preserving based Truth Discovery Scheme in Mobile Crowdsensing. arXiv 2025, arXiv:2505.04361. [Google Scholar]
- Cheng, Z.; Chen, J.; Liu, J. Utilizing Social Psychology Solutions to Enhance the Quality Assessment Ability of Unreliable Data in Mobile Crowdsensing. IEEE Internet Things J. 2024, 12, 3800–3815. [Google Scholar] [CrossRef]
- Bedogni, L.; Montori, F. Joint privacy and data quality aware reward in opportunistic Mobile Crowdsensing systems. J. Netw. Comput. Appl. 2023, 215, 103634. [Google Scholar] [CrossRef]
- Edirimannage, S.; Elvitigala, C.; Khalil, I.; Wijesekera, P.; Yi, X. QARMA-FL: Quality-aware robust model aggregation for mobile crowdsourcing. IEEE Internet Things J. 2023, 11, 1800–1815. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Guo, B.; Long, S.; Guo, S.; Cao, J. A UAV-assisted truth discovery approach with incentive mechanism design in mobile crowd sensing. IEEE/ACM Trans. Netw. 2023, 32, 1738–1752. [Google Scholar] [CrossRef]
- Wang, T.; Lv, C.; Wang, C.; Chen, F.; Luo, Y. A secure truth discovery for data aggregation in mobile crowd sensing. Secur. Commun. Netw. 2021, 2021, 2296386. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Wu, H.-T.; Yang, J.; Zheng, K.; Xu, L.; Yan, X.; Hu, J. RPTD: Reliability-enhanced privacy-preserving truth discovery for mobile crowdsensing. J. Netw. Comput. Appl. 2022, 207, 103484. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, J.; Liu, Z.; Li, Z.; Wu, Y.; Dong, C.; Li, R. A privacy-preserving and reputation-based truth discovery framework in mobile crowdsensing. IEEE Trans. Dependable Secur. Comput. 2023, 20, 5293–5311. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, M.; Zhu, L.; Wu, T.; Liu, X. Enabling efficient and strong privacy-preserving truth discovery in mobile crowdsensing. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3569–3581. [Google Scholar] [CrossRef]
- Bai, J.; Gui, J.; Wang, T.; Song, H.; Liu, A.; Xiong, N.N. ETBP-TD: An Efficient and Trusted Bilateral Privacy-Preserving Truth Discovery Scheme for Mobile Crowdsensing. IEEE Trans. Mob. Comput. 2024, 24, 2203–2219. [Google Scholar] [CrossRef]
- Huang, J.; Kong, L.; Cheng, L.; Dai, H.-N.; Qiu, M.; Chen, G.; Liu, X.; Huang, G. BlockSense: Towards trustworthy mobile crowdsensing via proof-of-data blockchain. IEEE Trans. Mob. Comput. 2022, 23, 1016–1033. [Google Scholar] [CrossRef]
- Yu, R.; Oguti, A.M.; Ochora, D.R.; Li, S. Towards a privacy-preserving smart contract-based data aggregation and quality-driven incentive mechanism for mobile crowdsensing. J. Netw. Comput. Appl. 2022, 207, 103483. [Google Scholar] [CrossRef]
- Gu, B.; Hu, W.; Gong, S.; Su, Z.; Guizani, M. CBDTF: A distributed and trustworthy data trading framework for mobile crowdsensing. IEEE Trans. Veh. Technol. 2023, 73, 4207–4218. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Yang, Z.; Zhang, P.; Wu, D.; Lu, Y.; Fedotov, A. Private Data Aggregation Based on Fog-Assisted Authentication for Mobile Crowd Sensing. Secur. Commun. Netw. 2021, 2021, 7354316. [Google Scholar] [CrossRef]
- Yang, G.; Sang, J.; Zhang, X.; He, X.; Liu, Y.; Sun, F. Sensing Data Aggregation in Mobile Crowd Sensing: A Cloud-Enhanced-Edge-End Framework With DQN-Based Offloading. IEEE Internet Things J. 2024, 11, 31852–31861. [Google Scholar] [CrossRef]
- Yan, X.; Ng, W.W.; Zhao, B.; Liu, Y.; Gao, Y.; Wang, X. Fog-enabled privacy-preserving multi-task data aggregation for mobile crowdsensing. IEEE Trans. Dependable Secur. Comput. 2023, 21, 1301–1316. [Google Scholar] [CrossRef]
- Yan, X.; Ng, W.W.Y.; Zeng, B.; Lin, C.; Liu, Y.; Lu, L.; Gao, Y. Verifiable, reliable, and privacy-preserving data aggregation in fog-assisted mobile crowdsensing. IEEE Internet Things J. 2021, 8, 14127–14140. [Google Scholar] [CrossRef]
- Lu, R.; Heung, K.; Lashkari, A.H.; Ghorbani, A.A. A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 2017, 5, 3302–3312. [Google Scholar] [CrossRef]
- Wang, T.; Xu, N.; Zhang, Q.; Chen, F.; Xie, D.; Zhao, C. A lightweight privacy-preserving truth discovery in mobile crowdsensing systems. J. Inf. Secur. Appl. 2024, 83, 103792. [Google Scholar] [CrossRef]









| Collusion Pattern | C1 Raw-Claim Confidentiality | C2 Weight–Identity Unlinkability | C3 Correctness | C4 Auditability |
|---|---|---|---|---|
| None (baseline) | ✓ | ✓ | ✓ | ✓ |
| CSP↔FN | ✓ | ✗ | ✓ | ✓ |
| CSP↔TA | ✓ | ✓ | ✓ | ✓ |
| FN↔Users | ✗ | ✓ | ✓ | ✓ |
| TA↔CSP↔FN | ✗ | ✗ | ✓ | ✓ |
| Method | MAE | RMSE | Max Iters |
|---|---|---|---|
| Task-wise private | 1.33 × 10−5 | 1.39 × 10−5 | 12 |
| Global/unified private | 0.0417 | 0.0529 | 37 |
| Dimensions | Total Runtime (min) | Client HE (ms) | FN Multiply (ms) | CSP Decrypt (ms) | Iterations |
|---|---|---|---|---|---|
| 5 | 7.8957 | 16.7584 | 4.0685 | 12.1474 | 9 |
| 10 | 13.3567 | 15.5703 | 3.6292 | 13.1995 | 9 |
| 15 | 20.7321 | 16.6370 | 3.8232 | 13.1432 | 10 |
| 20 | 28.1068 | 16.8028 | 3.7169 | 14.4956 | 9 |
| Users | Total Runtime (min) | Client HE (ms) | FN Multiply (ms) | CSP Decrypt (ms) | Iterations |
|---|---|---|---|---|---|
| 25 | 6.98 | 15.977 | 0.705 | 13.536 | 14 |
| 45 | 9.64 | 15.284 | 1.162 | 11.919 | 9 |
| 90 | 17.71 | 15.129 | 2.331 | 12.118 | 10 |
| 135 | 28.1068 | 16.8028 | 3.7169 | 14.4956 | 9 |
| Key Length (bits) | Total Runtime (min) | Client HE (ms) | FN Multiply (ms) | CSP Decrypt (ms) | Iterations |
|---|---|---|---|---|---|
| 512 | 3.94 | 2.369 | 1.397 | 1.728 | 9 |
| 1024 | 28.11 | 16.803 | 3.717 | 14.496 | 9 |
| 2048 | 179.59 | 108.559 | 10.654 | 95.272 | 10 |
| Metric | Mean | Std | Min | Max | CV% |
|---|---|---|---|---|---|
| Total runtime (min) | 30.50 | 1.52 | 27.92 | 32.47 | 4.98 |
| Client HE (ms) | 18.030 | 0.98 | 16.75 | 19.12 | 5.45 |
| FN multiply (ms) | 3.93 | 0.24 | 3.49 | 4.22 | 6.23 |
| CSP decrypt (ms) | 14.40 | 0.93 | 13.26 | 15.75 | 6.43 |
| Weight update (s) | 2.45 | 0.15 | 0.23 | 0.27 | 5.96 |
| Truth update (s) | 4.83 | 0.24 | 0.46 | 0.52 | 4.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Murugesan, R.K. Fine-Grained Personalized Data Aggregation Scheme with High Quality and Privacy Protection. Sensors 2025, 25, 6712. https://doi.org/10.3390/s25216712
Xia Z, Murugesan RK. Fine-Grained Personalized Data Aggregation Scheme with High Quality and Privacy Protection. Sensors. 2025; 25(21):6712. https://doi.org/10.3390/s25216712
Chicago/Turabian StyleXia, Zhuoyue, and Raja Kumar Murugesan. 2025. "Fine-Grained Personalized Data Aggregation Scheme with High Quality and Privacy Protection" Sensors 25, no. 21: 6712. https://doi.org/10.3390/s25216712
APA StyleXia, Z., & Murugesan, R. K. (2025). Fine-Grained Personalized Data Aggregation Scheme with High Quality and Privacy Protection. Sensors, 25(21), 6712. https://doi.org/10.3390/s25216712

