SAM-Based Approach for Automated Fabric Anisotropy Quantification in Concrete Aggregates
Abstract
1. Introduction
2. Methodology
2.1. Image Preprocessing Using CLAHE
2.2. SAM-Based Concrete Aggregate Segmentation
2.3. Aggregate Orientation Extraction
2.4. Fabric Anisotropy Analysis
3. Dataset
4. Experiment Results and Discussion
4.1. Evaluation Metrics
4.2. Comparison of SAM with Other Segmentation Methods
4.3. Effect of Grid Points on SAM Performance
4.4. Evaluation of Concrete Aggregate Anisotropy
4.5. Limitations and Future Work
5. Conclusions
- (1)
- The SAM achieves effective zero-shot segmentation of concrete aggregates without additional training. On the self-constructed dataset, SAM achieved a Precision of 0.894, Recall of 0.796, F1-score of 0.842, and IoU of 0.739, demonstrating a high accuracy and robustness.
- (2)
- The computational geometry approach combined with second-order Fourier series provides accurate assessment of the aggregate orientation and fabric anisotropy. The average absolute discrepancies in directional and fabric anisotropy indicators are 4.15° and 0.025, respectively, validating the reliability of the proposed method.
- (3)
- The segmentation performance is sensitive to the number of SAM grid points. Increasing grid points shifts the results from under-segmentation to over-segmentation, with an optimal performance observed at 32 grid points.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Pei, L.; Peng, S.; Li, X.; Chen, J.; Chen, C. Hydration, Hardening Mechanism, and Performance of Tuff Normal Concrete. J. Mater. Civ. Eng. 2021, 33, 04021063. [Google Scholar] [CrossRef]
- Taheri-Shakib, J.; Al-Mayah, A. A Review of Microstructure Characterization of Asphalt Mixtures Using Computed Tomography Imaging: Prospects for Properties and Phase Determination. Constr. Build. Mater. 2023, 385, 131419. [Google Scholar] [CrossRef]
- Ghosh, S.; Deb, A. Role of Material Fabric in Flexural Failure in Concrete. J. Eng. Mech. 2021, 147, 04021112. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, C.H.; Shin, M.; Bhattacharya, S.; Su, Y.F. Influence of Coarse Aggregate Angularity on the Mechanical Performance of Cement-Based Materials. Constr. Build. Mater. 2019, 204, 184–192. [Google Scholar] [CrossRef]
- Wang, D.; Ren, B.; Cui, B.; Wang, J.; Wang, X.; Guan, T. Real-Time Monitoring for Vibration Quality of Fresh Concrete Using Convolutional Neural Networks and IoT Technology. Autom. Constr. 2021, 123, 103510. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Ma, T.; Kuang, D. Effect of Aggregate Morphologies and Compaction Methods on the Skeleton Structures in Asphalt Mixtures. Constr. Build. Mater. 2020, 263, 120220. [Google Scholar] [CrossRef]
- Eyad, M.; Laith, T.; Niranjanan, S.; Dallas, L. Micromechanics-Based Analysis of Stiffness Anisotropy in Asphalt Mixtures. J. Mater. Civ. Eng. 2002, 14, 374–383. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Wang, X.; Monteiro, P.J.M. 2D Image Analysis Method for Evaluating Coarse Aggregate Characteristic and Distribution in Concrete. Constr. Build. Mater. 2016, 127, 30–42. [Google Scholar] [CrossRef]
- Ambika, K.; Animesh, D. Experimental Study on Effect of Geometrical Arrangement of Aggregates on Strength of Asphalt Mix. In Proceedings of the Airfield and Highway Pavements 2023: Design, Construction, Condition Evaluation, and Management of Pavements—Selected Papers from the International Airfield and Highway Pavements Conference 2023, Austin, TX, USA, 14–17 June 2023. [Google Scholar]
- Peng, Y.; Sun, L.J. Micromechanics-Based Analysis of the Effect of Aggregate Homogeneity on the Uniaxial Penetration Test of Asphalt Mixtures. J. Mater. Civ. Eng. 2016, 28, 04016119. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yang, L.; Liu, G.; Du, H. Evaluation of Aggregates, Fibers and Voids Distribution in 3D Printed Concrete. J. Sustain. Cem. Mater. 2023, 12, 775–788. [Google Scholar] [CrossRef]
- Roux, S.G.; Clausel, M.; Vedel, B.; Jaffard, S.; Abry, P. Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution. IEEE Trans. Image Process. 2013, 22, 4353–4363. [Google Scholar] [CrossRef]
- Oulhaj, H.; Rziza, M.; Amine, A.; Toumi, H.; Lespessailles, E.; El Hassouni, M.; Jennane, R. Anisotropic Discrete Dual-Tree Wavelet Transform for Improved Classification of Trabecular Bone. IEEE Trans. Med. Imaging 2017, 36, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, A.; Corpetti, T.; Moy, L.H. Estimation of the Orientation of Textured Patterns via Wavelet Analysis. Pattern Recognit. Lett. 2011, 32, 190–196. [Google Scholar] [CrossRef]
- Zheng, J.; Hryciw, R.D. Cross-Anisotropic Fabric of Sands by Wavelet-Based Simulation of Human Cognition. Soils Found. 2018, 58, 1028–1041. [Google Scholar] [CrossRef]
- Jia, X.; Cao, P.; Han, Y.; Zheng, H.; Wu, Y.; Zheng, J. Microstructure Characterization of High Explosives by Wavelet Transform. Math. Probl. Eng. 2022, 2022, 3833205. [Google Scholar] [CrossRef]
- Wang, W.; Wei, D.; Gan, Y. An Experimental Investigation on Cemented Sand Particles Using Different Loading Paths: Failure Modes and Fabric Quantifications. Constr. Build. Mater. 2020, 258, 119487. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Benedetti, P.; Femminella, M.; Reali, G. Mixed-Sized Biomedical Image Segmentation Based on U-Net Architectures. Appl. Sci. 2022, 13, 329. [Google Scholar] [CrossRef]
- Chang, C.C.; Wang, Y.P.; Cheng, S.C. Fish Segmentation in Sonar Images by Mask R-Cnn on Feature Maps of Conditional Random Fields. Sensors 2021, 21, 7625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, H.; Zhu, X.; Xie, L. Automatic Crack Detection Using Weakly Supervised Semantic Segmentation Network and Mixed-Label Training Strategy. Found. Comput. Decis. Sci. 2024, 49, 95–118. [Google Scholar] [CrossRef]
- Coenen, M.; Schack, T.; Beyer, D.; Heipke, C.; Haist, M. Semi-Supervised Segmentation of Concrete Aggregate Using Consensus Regularisation and Prior Guidance. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 2, 83–91. [Google Scholar] [CrossRef]
- Wan, H.; Gao, L.; Yuan, Z.; Qu, H.; Sun, Q.; Cheng, H.; Wang, R. A Novel Transformer Model for Surface Damage Detection and Cognition of Concrete Bridges. Expert Syst. Appl. 2023, 213, 119019. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; Li, J. Concrete Dam Damage Detection and Localisation Based on YOLOv5s-HSC and Photogrammetric 3D Reconstruction. Autom. Constr. 2022, 213, 104555. [Google Scholar] [CrossRef]
- Chow, J.K.; Li, Z.; Su, Z.; Wang, Y.H. Characterization of Particle Orientation of Kaolinite Samples Using the Deep Learning-Based Technique. Acta Geotech. 2021, 17, 1097–1110. [Google Scholar] [CrossRef]
- Wang, W.; Su, C.; Zhang, H. Automatic Segmentation of Concrete Aggregate Using Convolutional Neural Network. Autom. Constr. 2022, 134, 104106. [Google Scholar] [CrossRef]
- Reza, A.M. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the IEEE International Conference on Computer Vision, Paris, France, 2–6 October 2023. [Google Scholar]
- Kang, J.; Chen, N.; Li, M.; Mao, S.; Zhang, H.; Fan, Y.; Liu, H. A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model. Remote Sens. 2024, 16, 97. [Google Scholar] [CrossRef]
- Shi, P.; Qiu, J.; Abaxi, S.M.D.; Wei, H.; Lo, F.P.W.; Yuan, W. Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation. Diagnostics 2023, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y. Integrated Framework for Unsupervised Building Segmentation with Segment Anything Model-Based Pseudo-Labeling and Weakly Supervised Learning. Remote Sens. 2024, 16, 526. [Google Scholar] [CrossRef]
- Chen, K.; Liu, C.; Chen, H.; Zhang, H.; Li, W.; Zou, Z.; Shi, Z. RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation Based on Visual Foundation Model. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4701117. [Google Scholar] [CrossRef]
- Jiang, G. Industrial-SAM with Interactive Adapter. In Pattern Recognition and Computer Vision; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Chen, J.; Kong, Y.; Wang, H.; Chen, Y.; Liu, J. Investigation on Inherent Anisotropy of Asphalt Concrete Due to Internal Aggregate Particles. In Transportation Research Congress 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 39–48. [Google Scholar]
- Le, N.B.; Toyota, H.; Takada, S. Evaluation of Mechanical Properties of Mica-Mixed Sand Considering Inherent Anisotropy. Soils Found. 2020, 60, 533–550. [Google Scholar] [CrossRef]










| Cement (kg/m3) | Sand (kg/m3) | Aggregate (kg/m3) | Water (kg/m3) | Fly Ash (kg/m3) | Admixture (kg/m3) | Slag (kg/m3) | |
|---|---|---|---|---|---|---|---|
| Fine (5–10 mm) | Coarse (10–20 mm) | ||||||
| 190 | 752 | 849 | 284 | 95 | 130 | 5 | 80 |
| Method | Precision | Recall | F1-Score | IoU |
|---|---|---|---|---|
| Otsu threshold | 0.765 | 0.748 | 0.756 | 0.611 |
| Iterative threshold | 0.919 | 0.505 | 0.652 | 0.486 |
| SAM | 0.894 | 0.796 | 0.842 | 0.739 |
| Point Number | Precision | Recall | F1-Score | IoU | Time |
|---|---|---|---|---|---|
| 2 | 0.876 | 0.042 | 0.087 | 0.042 | 6.20 |
| 4 | 0.954 | 0.116 | 0.204 | 0.115 | 6.54 |
| 8 | 0.938 | 0.399 | 0.558 | 0.389 | 8.04 |
| 16 | 0.900 | 0.711 | 0.794 | 0.658 | 12.31 |
| 32 | 0.848 | 0.843 | 0.845 | 0.732 | 24.98 |
| 64 | 0.797 | 0.852 | 0.823 | 0.700 | 47.24 |
| 128 | 0.780 | 0.854 | 0.815 | 0.688 | 135.03 |
| Image | Precision | Recall | F1-Score | IoU |
|---|---|---|---|---|
| Image No. 1 | 0.919 | 0.849 | 0.883 | 0.791 |
| Image No. 2 | 0.912 | 0.818 | 0.862 | 0.758 |
| Image No. 3 | 0.93 | 0.823 | 0.873 | 0.775 |
| Image No. 4 | 0.913 | 0.867 | 0.889 | 0.801 |
| Average | 0.919 | 0.839 | 0.877 | 0.781 |
| Image | Orientation Evaluation | Anisotropy Evaluation | ||||
|---|---|---|---|---|---|---|
| Manual | Proposed Method | Absolute Error | Manual | Proposed Method | Absolute Error | |
| Image No. 1 | 66.0° | 72.3° | 6.3° | 0.141 | 0.147 | 0.006 |
| Image No. 2 | 48.9° | 51.4° | 2.5° | 0.138 | 0.175 | 0.027 |
| Image No. 3 | 77.5° | 71.9° | 5.6° | 0.100 | 0.071 | 0.029 |
| Image No. 4 | 155.0° | 157.2° | 2.2° | 0.128 | 0.089 | 0.039 |
| Average | - | - | 4.15° | - | - | 0.025 |
| Variance | - | - | 3.313° | - | - | 0.000144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, C.; Huang, H.; Chen, J.; Zhang, P.; Xue, J. SAM-Based Approach for Automated Fabric Anisotropy Quantification in Concrete Aggregates. Sensors 2025, 25, 6661. https://doi.org/10.3390/s25216661
Liu Z, Chen C, Huang H, Chen J, Zhang P, Xue J. SAM-Based Approach for Automated Fabric Anisotropy Quantification in Concrete Aggregates. Sensors. 2025; 25(21):6661. https://doi.org/10.3390/s25216661
Chicago/Turabian StyleLiu, Zongxian, Chen Chen, Huibao Huang, Jiankang Chen, Pengtao Zhang, and Jianghan Xue. 2025. "SAM-Based Approach for Automated Fabric Anisotropy Quantification in Concrete Aggregates" Sensors 25, no. 21: 6661. https://doi.org/10.3390/s25216661
APA StyleLiu, Z., Chen, C., Huang, H., Chen, J., Zhang, P., & Xue, J. (2025). SAM-Based Approach for Automated Fabric Anisotropy Quantification in Concrete Aggregates. Sensors, 25(21), 6661. https://doi.org/10.3390/s25216661

