From Innovation to Integration: Bridging the Gap Between IoMT Technologies and Real-World Health Management Systems
Abstract
1. Introduction
1.1. Background and Motivation
1.2. From Innovation to Integration
1.3. Scope and Contributions
2. Framework Overview
- Axis 1—Technological Landscape Assessment. Establishes an evidence-based map of the current IoMT ecosystem: core components (sensors, WBANs, and gateways), enabling technologies (AI/ML, edge–cloud architectures, and XR), typical data flows, and proven application domains (acute care, home monitoring, and rehabilitation). This assessment identifies maturity levels, integration gaps, and emergent capabilities, producing a technology inventory, maturity matrix, and prioritized RWD needs to guide selection and procurement.
- Axis 2—Systematic Classification of Integration Barriers. Provides a structured diagnosis of adoption obstacles across four domains: technological (interoperability, explainability, validation, and security); organizational (workflow fit, training, and resource allocation); ethical/regulatory (privacy, consent, liability, and compliance); and human-centered (usability, trust, and adherence). The classification yields targeted barrier profiles and risk registers that inform mitigation planning and pilot design.
- Axis 3—Strategic Methods for Sustainable Integration. Translates diagnostics into actionable strategies and tools: participatory co-design and stakeholder engagement, digital literacy and on-boarding programs, regulatory and validation pathways (clinical evaluation, Medical Device Regulation, and GDPR alignment), and adaptive infrastructures (HL7 FHIR middleware, and edge–cloud orchestration). This axis also specifies operational artefacts (interoperability middleware, explainability frameworks, validation pipelines, and training curricula) to support scalable, ethically grounded deployments.
- Axis 4—Equity, Sustainability, and Governance Analysis. Embeds inclusion, long-term engagement, economic sustainability, and accountable governance into integration pathways. Key deliverables include equitable access models (hybrid digital/analog approaches), cost-effectiveness and budget-impact analyses, multi-stakeholder governance bodies (digital steering committees, data stewardship arrangements), and alignment with policy instruments (privacy law, AI regulation, and health data spaces).
3. Axis 1: Technological Landscape Assessment
3.1. Core IoMT Technologies
3.2. Current Applications
3.3. Demonstrated Benefits
4. Axis 2: Systematic Classification of Integration Barriers
4.1. Technological Integration, Interoperability, and Explainability
4.2. Workflow and Organizational Capacity
4.3. Ethical, Legal, and Regulatory Constraints
4.4. User Acceptance, Transparency, and Trustworthiness
5. Axis 3: Strategic Methods for Sustainable Integration
5.1. Contextual Adaptation and Participatory Design: Aligning Technology with Clinical and Social Settings
5.2. Enabling Platforms and Infrastructures
5.3. Validation and Regulatory Readiness
5.4. Training and Digital Literacy
6. Axis 4: Equity, Sustainability, and Governance Analysis
6.1. Equity and Accessibility
6.2. Long-Term Engagement and Adoption
6.3. Economic Considerations and Sustainability
6.4. Policy and Governance Recommendations
7. Practical Application of the Framework: A Case Study Example
7.1. Case Study Overview
7.2. Methodological Approach and Tools
7.3. Framework Application and Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardašević, G.; Katzis, K.; Bajić, D.; Berbakov, L. Emerging Wireless Sensor Networks and Internet of Things Technologies—Foundations of Smart Healthcare. Sensors 2020, 20, 3619. [Google Scholar] [CrossRef]
- Matthew, P.; McHale, S.; Deng, X.; Nakhla, G.; Trovati, M.; Nnamoko, N.; Pereira, E.; Zhang, H. A Review of the State of the Art for the Internet of Medical Things. Sci 2025, 7, 36. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A.; Yelamarthi, K. Prospect of Internet of Medical Things: A Review on Security Requirements and Solutions. Sensors 2022, 22, 5517. [Google Scholar] [CrossRef]
- Gallo, G.D.; Micucci, D. Internet of Medical Things Systems Review: Insights into Non-Functional Factors. Sensors 2025, 25, 2795. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Torkamani, A.; Butte, A.J.; Glicksberg, B.S.; Schuller, B.; Rodriguez, B.; Ting, D.S.W.; Bates, D.W.; Schaden, E.; Peng, H.; et al. The Promise of Digital Healthcare Technologies. Front. Public Health 2023, 11, 1196596. [Google Scholar] [CrossRef]
- Rodrigues, D.A.; Salam, A.; Mateus, C.; Vale, S.; Pinto, A.L.; Pinto, F.J.; Roque, F.T.; Jaana, M. Barriers and Facilitators of Health Professionals in Adopting Digital Health–Related Tools for Medication Appropriateness: A Systematic Review. Digit. Health 2024, 10, 20552076231225133. [Google Scholar] [CrossRef]
- Al-Rawashdeh, M.; Keikhosrokiani, P.; Belaton, B.; Alawida, M.; Zwiri, A. IoT Adoption and Application for Smart Healthcare: A Systematic Review. Sensors 2022, 22, 5377. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Liu, T.; Liu, R.; Yang, H.; Liu, C. Effectiveness of Digital Health Literacy Interventions in Older Adults: Single-Arm Meta-Analysis. J. Med. Internet Res. 2023, 25, e48166. [Google Scholar] [CrossRef]
- Mukhtar, T.; Fahim, A.K.; Anam, S.; Rasul, S.E.; Chaudhary, Z.H.; Faheem, M.; Syed, K.; Khan, W.U. Digital Health Literacy: A Systematic Review of Interventions and Influences on Healthcare Access. Pak. J. Med. Sci. 2025, 41, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.; Christie, G.J.; Moreno, S. The Challenges Toward Real-world Implementation of Digital Health Design Approaches: Narrative Review. JMIR Hum. Factors 2022, 9, e35693. [Google Scholar] [CrossRef]
- Tzimourta, K.D. Human-Centered Design and Development in Digital Health: Approaches, Challenges, and Emerging Trends. Cureus 2025, 17, e85897. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An Overview on Wireless Sensor Networks Technology and Evolution. Sensors 2009, 9, 6869–6896. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring. Sensors 2011, 11, 5561–5595. [Google Scholar] [CrossRef] [PubMed]
- Teshome, A.K.; Kibret, B.; Lai, D.T.H. A Review of Implant Communication Technology in WBAN: Progress and Challenges. IEEE Rev. Biomed. Eng. 2019, 12, 88–99. [Google Scholar] [CrossRef]
- Zhong, L.; He, S.; Lin, J.; Wu, J.; Li, X.; Pang, Y.; Li, Z. Technological Requirements and Challenges in Wireless Body Area Networks for Health Monitoring: A Comprehensive Survey. Sensors 2022, 22, 3539. [Google Scholar] [CrossRef]
- Habehh, H.; Gohel, S. Machine Learning in Healthcare. Curr. Genom. 2021, 22, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.G.; Atkinson, E.G. Machine Learning and Health Care: Potential Benefits and Issues. J. Ambul. Care Manag. 2023, 46, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Trayanova, N.A.; Popescu, D.M.; Shade, J.K. Machine Learning in Arrhythmia and Electrophysiology. Circ. Res. 2021, 128, 544–566. [Google Scholar] [CrossRef]
- Guan, Z.; Li, H.; Liu, R.; Cai, C.; Liu, Y.; Li, J.; Wang, X.; Huang, S.; Wu, L.; Liu, D.; et al. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep. Med. 2023, 4, 101213. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2020, 14, 86–93. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration (US): Silver Spring, MD, USA; National Institutes of Health (US): Bethesda, MD, USA, 2016.
- Macias Alonso, A.K.; Hirt, J.; Woelfle, T.; Janiaud, P.; Hemkens, L.G. Definitions of digital biomarkers: A systematic mapping of the biomedical literature. BMJ Health Care Inform. 2024, 31, e100914. [Google Scholar] [CrossRef]
- McGinnis, E.W.; Cherian, J.; McGinnis, R.S. The State of Digital Biomarkers in Mental Health. Digit. Biomarkers 2024, 8, 210–217. [Google Scholar] [CrossRef]
- Oakley-Girvan, I.; Zhai, Y.; Yunis, R.; Liu, R.; Davis, S.W.; Kubo, A.; Aghaee, S.; Blankenship, J.M.; Lyden, K.; Neeman, E. Analysis Method of Real-World Digital Biomarkers for Clinical Impact in Cancer Patients. Digit. Biomarkers 2025, 9, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Cho, E.; Lee, H.; Lee, S.; Kim, S.; Kim, J. Development of Neurodegenerative Disease Diagnosis and Monitoring from Traditional to Digital Biomarkers. Biosensors 2025, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.; Southworth, M.K.; Silva, J.N.A.; Silva, J.R. Extended Reality in Medical Practice. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Park, J.K.; Koh, Y.H. A systematic review and meta-analysis on the effect of virtual reality-based rehabilitation for people with Parkinson’s disease. J. Neuroeng. Rehabil. 2023, 20, 94. [Google Scholar] [CrossRef]
- Faizan Siddiqui, M.; Jabeen, S.; Alwazzan, A.; Vacca, S.; Dalal, L.; Al-Haddad, B.; Jaber, A.; Ballout, F.F.; Abou Zeid, H.K.; Haydamous, J.; et al. Integration of Augmented Reality, Virtual Reality, and Extended Reality in Healthcare and Medical Education: A Glimpse into the Emerging Horizon in LMICs—A Systematic Review. J. Med. Educ. Curric. Dev. 2025, 12, 23821205251342315. [Google Scholar] [CrossRef]
- European Commission. Internet of Things: Large-Scale Pilots Towards an Interconnected Society. Available online: https://digitalstrategy.ec.europa.eu/en/news/internet-things-large-scale-pilots-towards-interconnected-society (accessed on 18 July 2025).
- Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. J. Oral Biol. Craniofacial Res. 2022, 12, 302–318. [Google Scholar] [CrossRef]
- Wintergerst, K.A.; Deiss, D.; Buckingham, B.; Cantwell, M.; Kache, S.; Agarwal, S.; Wilson, D.M.; Steil, G. Glucose Control in Pediatric Intensive Care Unit Patients Using an Insulin–Glucose Algorithm. Diabetes Technol. Ther. 2007, 9, 211–222. [Google Scholar] [CrossRef]
- Huang, L.; Yin, Y.; Fu, Z.; Zhang, S.; Deng, H.; Liu, D. LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data. PLoS ONE 2020, 15, e0230706. [Google Scholar] [CrossRef] [PubMed]
- Mulita, F.; Verras, G.I.; Anagnostopoulos, C.N.; Kotis, K. A Smarter Health through the Internet of Surgical Things. Sensors 2022, 22, 4577. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Qureshi, F.; Krishnan, S. Wearable Hardware Design for the Internet of Medical Things (IoMT). Sensors 2018, 18, 3812. [Google Scholar] [CrossRef]
- Guarducci, S.; Jayousi, S.; Caputo, S.; Mucchi, L. Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices. Sensors 2025, 25, 556. [Google Scholar] [CrossRef]
- Othman, S.B.; Getahun, M. Leveraging blockchain and IoMT for secure and interoperable electronic health records. Sci. Rep. 2025, 15, 12358. [Google Scholar] [CrossRef]
- Tai, Y.; Gao, B.; Li, Q.; Yu, Z.; Zhu, C.; Chang, V. Trustworthy and Intelligent COVID-19 Diagnostic IoMT Through XR and Deep-Learning-Based Clinic Data Access. IEEE Internet Things J. 2021, 8, 15965–15976. [Google Scholar] [CrossRef] [PubMed]
- Seth, M.; Jalo, H.; Högstedt, A.; Medin, O.; Björner, U.; Sjöqvist, B.A.; Candefjord, S. Technologies for Interoperable Internet of Medical Things Platforms to Manage Medical Emergencies in Home and Prehospital Care: Protocol for a Scoping Review. JMIR Res. Protoc. 2022, 11, e40243. [Google Scholar] [CrossRef]
- Silva, M.d.S.; Araújo, J.L.; Nunes, G.A.M.d.A.; Rosa, M.F.F.; Luz, G.V.d.S.; Rosa, S.d.S.R.F.; Piratelli-Filho, A. Precision and reliability study of hospital infusion pumps: A systematic review. BioMed. Eng. OnLine 2023, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Rampat, R.; Deshmukh, R.; Chen, X.; Ting, D.S.; Said, D.G.; Dua, H.S.; Ting, D.S. Artificial Intelligence in Cornea, Refractive Surgery, and Cataract: Basic Principles, Clinical Applications, and Future Directions. Asia-Pac. J. Ophthalmol. 2021, 10, 268–281. [Google Scholar] [CrossRef]
- Akram, A.; Rashid, J.; Jaffar, M.A.; Faheem, M.; Amin, R.u. Segmentation and classification of skin lesions using hybrid deep learning method in the Internet of Medical Things. Skin Res. Technol. 2023, 29, e13524. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Shah, P.M.; Khan, I.A.; Islam, S.u.; Ahmad, Z.; Khan, F.; Lee, Y. IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning. Sensors 2023, 23, 1471. [Google Scholar] [CrossRef] [PubMed]
- Bellemo, V.; Lim, G.; Rim, T.H.; Tan, G.S.W.; Cheung, C.Y.; Sadda, S.; He, M.-G.; Tufail, A.; Lee, M.L.; Hsu, W.; et al. Artificial Intelligence Screening for Diabetic Retinopathy: The Real-World Emerging Application. Curr. Diabetes Rep. 2019, 19, 72. [Google Scholar] [CrossRef]
- Islam, M.K.; Kaushal, C.; Amin, M.A.; Algarni, A.D.; Alturki, N.; Soliman, N.F.; Mansour, R.F. A Secure Framework toward IoMT-Assisted Data Collection, Modeling, and Classification for Intelligent Dermatology Healthcare Services. Contrast Media Mol. Imaging 2022, 2022, 6805460. [Google Scholar] [CrossRef]
- Andrès, E.; Meyer, L.; Zulfiqar, A.A.; Hajjam, M.; Talha, S.; Bahougne, T.; Ervé, S.; Hajjam, J.; Doucet, J.; Jeandidier, N.; et al. Telemonitoring in diabetes: Evolution of concepts and technologies, with a focus on results of the more recent studies. J. Med. Life 2019, 12, 203–214. [Google Scholar] [CrossRef]
- Nagase, F.I.; Stafinski, T.; Avdagovska, M.; Stickland, M.K.; Etruw, E.M.; Menon, D. Effectiveness of remote home monitoring for patients with Chronic Obstructive Pulmonary Disease (COPD): Systematic review. BMC Health Serv. Res. 2022, 22, 646. [Google Scholar] [CrossRef]
- Umer, M.; Aljrees, T.; Karamti, H.; Ishaq, A.; Alsubai, S.; Omar, M.; Bashir, A.K.; Ashraf, I. Heart failure patients monitoring using IoT-based remote monitoring system. Sci. Rep. 2023, 13, 19213. [Google Scholar] [CrossRef]
- George, J.; MacDonald, T. Home Blood Pressure Monitoring. Eur. Cardiol. Rev. 2015, 10, 95. [Google Scholar] [CrossRef]
- Goergen, J.A.; Peigh, G.; Hsu, M.; Wilk, A.; Nayak, T.; Crosson, L.; Lenane, J.; Knight, B.P.; Passman, R. Comparison of data quality and monitoring completion rates between clinic and self-applied ECG patches. Heart Rhythm 2023, 20, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Monfared Dehbali, M.; Farahmandpour, M.; Hamedi, S.; Kordrostami, Z. Development of a portable smart Glucometer with two electrode bio-electronic test strip patch based on Cu/Au/rGO/PEDOT:PSS. Sci. Rep. 2023, 13, 9505. [Google Scholar] [CrossRef]
- Piwek, L.; Ellis, D.A.; Andrews, S.; Joinson, A. The rise of consumer health wearables: Promises and barriers. PLoS Med. 2016, 13, e1001953. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Venkataraman, R.; Gururajan, R.; Zhou, X.; Genrich, R. Mobile phone enabled mental health monitoring to enhance diagnosis for severity assessment of behaviours: A review. PeerJ Comput. Sci. 2022, 8, e1042. [Google Scholar] [CrossRef]
- Himes, B.E.; Leszinsky, L.; Walsh, R.; Hepner, H.; Wu, A.C. Mobile health and inhaler-based monitoring devices for asthma management. J. Allergy Clin. Immunol. Pract. 2019, 7, 2535–2543. [Google Scholar] [CrossRef] [PubMed]
- Van De Hei, S.J.; Stoker, N.; Flokstra-de Blok, B.M.J.; Poot, C.C.; Meijer, E.; Postma, M.J.; Chavannes, N.H.; Kocks, J.W.H.; van Boven, J.F.M. Anticipated barriers and facilitators for implementing smart inhalers in asthma medication adherence management. NPJ Prim. Care Respir. Med. 2023, 33, 22. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Hootegem, A.; Van den Bossche, M.; Van Gendt, M.; Witvrouw, E.; Wezenbeek, E. Extended reality in musculoskeletal rehabilitation and injury prevention—A systematic review. Phys. Ther. Sport 2022, 55, 229–240. [Google Scholar] [CrossRef]
- V, H.; PK, M.P.K.; MG, R. Extended Reality in Revolutionizing Neurological Disease: A New Era for Chronic Condition Treatment. Cureus 2024, 16, e67633. [Google Scholar] [CrossRef]
- Lohse, K.; Shirzad, N.; Verster, A.; Hodges, N.; Van der Loos, H.F.M. Video Games and Rehabilitation: Using Design Principles to Enhance Engagement in Physical Therapy. J. Neurol. Phys. Ther. 2013, 37, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, C.; Jayousi, S.; Guarducci, S.; Caputo, S.; Alaimo, M.; Capanni, L.; Serafini, G.; Serrano, M.; Zoppi, P.; Mucchi, L. Extended reality and information and communications technology in therapy: Enhancing remote artistic and recreational engagement for physically impaired and socially isolated patients. Digit. Health 2025, 11, 20552076251350440. [Google Scholar] [CrossRef]
- Roy, T.; Nahid, M. The IoMT and Cloud in Healthcare: Use, Impact and Efficiency of Contemporary Sensor Devices Used by Patients and Clinicians. In Proceedings of the ICCA 2022: 2nd International Conference on Computing Advancements, Dhaka, Bangladesh, 10–12 March 2022; pp. 426–434. [Google Scholar] [CrossRef]
- Sahu, M.L.; Atulkar, M.; Ahirwal, M.K.; Ahamad, A. Vital Sign Monitoring System for Healthcare Through IoT Based Personal Service Application. Wirel. Pers. Commun. 2021, 122, 129–156. [Google Scholar] [CrossRef]
- Kim, H.; Rigo, B.; Wong, G.; Lee, Y.J.; Yeo, W.H. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. Nano-Micro Lett. 2023, 16, 52. [Google Scholar] [CrossRef]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient. Intell. Humaniz. Comput. 2017, 10, 57–76. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Internet of Medical Things Healthcare for Sustainable Smart Cities: Current Status and Future Prospects. Appl. Sci. 2023, 13, 8869. [Google Scholar] [CrossRef]
- Riazul Islam, S.M.; Kwak, D.; Humaun Kabir, M.; Hossain, M.; Kwak, K.S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Viceconti, M.; Hunter, P.; Hose, R. Big Data, Big Knowledge: Big Data for Personalized Healthcare. IEEE J. Biomed. Health Inform. 2015, 19, 1209–1215. [Google Scholar] [CrossRef]
- Fernandes, J.B.; Teixeira, F.; Godinho, C. Personalized Care and Treatment Compliance in Chronic Conditions. J. Pers. Med. 2022, 12, 737. [Google Scholar] [CrossRef]
- Wagner, A.K. A Rehabilomics framework for personalized and translational rehabilitation research and care for individuals with disabilities: Perspectives and considerations for spinal cord injury. J. Spinal Cord Med. 2014, 37, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.W.; Dai, H.J.; Jonnagaddala, J.; Chen, C.W.; Tsai, R.T.H.; Hsu, W.L. A context-aware approach for progression tracking of medical concepts in electronic medical records. J. Biomed. Inform. 2015, 58, S150–S157. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Sumner, J.; Ling, L.H.; Quek, R.H.C.; Tan, A.T.H.; Teng, G.G.; Seetharaman, S.K.; Gollamudi, S.P.K.; Ho, D.; Motani, M. Personalised Dosing Using the CURATE.AI Algorithm: Protocol for a Feasibility Study in Patients with Hypertension and Type II Diabetes Mellitus. Int. J. Environ. Res. Public Health 2022, 19, 8979. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef]
- Jo, H.; Kang, E.; Lee, B.S. What Drives Trust and Satisfaction in Health Welfare Social Cooperatives? Healthcare 2025, 13, 1383. [Google Scholar] [CrossRef]
- Arora, S. IoMT (Internet of Medical Things): Reducing Cost While Improving Patient Care. IEEE Pulse 2020, 11, 24–27. [Google Scholar] [CrossRef]
- Khatib, I.A.; Shamayleh, A.; Ndiaye, M. Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions. Informatics 2024, 11, 47. [Google Scholar] [CrossRef]
- Abreha, H.G.; Hayajneh, M.; Serhani, M.A. Federated Learning in Edge Computing: A Systematic Survey. Sensors 2022, 22, 450. [Google Scholar] [CrossRef]
- Gragnaniello, M.; Marrazzo, V.R.; Borghese, A.; Maresca, L.; Breglio, G.; Riccio, M. Edge-AI Enabled Wearable Device for Non-Invasive Type 1 Diabetes Detection Using ECG Signals. Bioengineering 2024, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Olivencia, S.B.; Zahed, K.; Sasangohar, F.; Dvir, R.; Vedlitz, A. Integration of Remote Patient Monitoring Systems into Physicians Work in Underserved Communities: Survey of Healthcare Provider Perspectives. arXiv 2022, arXiv:2207.01489. [Google Scholar] [CrossRef]
- Sanders, E.B.N.; Stappers, P.J. Co-creation and the new landscapes of design. CoDesign 2008, 4, 5–18. [Google Scholar] [CrossRef]
- Mur-Veeman, I. Bringing user experience to healthcare improvement: The concepts, methods and practices of experience-based design. Int. J. Integr. Care 2008, 8, e76. [Google Scholar] [CrossRef]
- Osama, M.; Ateya, A.A.; Sayed, M.S.; Hammad, M.; Pławiak, P.; Abd El-Latif, A.A.; Elsayed, R.A. Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions. Sensors 2023, 23, 7435. [Google Scholar] [CrossRef]
- Rabiei, R.; Almasi, S. Requirements and challenges of hospital dashboards: A systematic literature review. BMC Med. Inform. Decis. Mak. 2022, 22, 287. [Google Scholar] [CrossRef]
- Kruse, C.S.; Stein, A.; Thomas, H.; Kaur, H. The use of Electronic Health Records to Support Population Health: A Systematic Review of the Literature. J. Med. Syst. 2018, 42, 214. [Google Scholar] [CrossRef] [PubMed]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. [Google Scholar]
- Khatiwada, P.; Yang, B.; Lin, J.C.; Blobel, B. Patient-generated health data (PGHD): Understanding, requirements, challenges, and existing techniques for data security and privacy. J. Pers. Med. 2024, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, J.M.M.; Pierscionek, B. The effect of the general data protection regulation on medical research. J. Med. Internet Res. 2017, 19, e47. [Google Scholar] [CrossRef] [PubMed]
- Sumartono, E.; Harliyanto, R.; Situmeang, S.M.T.; Siagian, D.S.; Septaria, E. The legal implications of data privacy laws, cybersecurity regulations, and AI ethics in a digital society. J. Acad. Sci. 2024, 1, 103–110. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box models. ACM Comput. Surv. 2018, 51, 1–42. [Google Scholar] [CrossRef]
- Hu, L.; Chen, Y. Fair classification and social welfare. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 535–545. [Google Scholar]
- Baig, M.M.; Afifi, S.; GholamHosseini, H.; Mirza, F. A Systematic Review of Wearable Sensors and IoT-Based Monitoring Applications for Older Adults—A Focus on Ageing Population and Independent Living. J. Med. Syst. 2019, 43, 233. [Google Scholar] [CrossRef]
- Tian, Y.J.; Felber, N.A.; Pageau, F.; Schwab, D.R.; Wangmo, T. Benefits and barriers associated with the use of smart home health technologies in the care of older persons: A systematic review. BMC Geriatr. 2024, 24, 152. [Google Scholar] [CrossRef]
- Goodwin, N.C. Functionality and usability. Commun. ACM 1987, 30, 229–233. [Google Scholar] [CrossRef]
- Tandon, A.; Cobb, B.; Centra, J.; Izmailova, E.; Manyakov, N.V.; McClenahan, S.; Patel, S.; Sezgin, E.; Vairavan, S.; Vrijens, B.; et al. Human Factors, Human-Centered Design, and Usability of Sensor-Based Digital Health Technologies: Scoping Review. J. Med. Internet Res. 2024, 26, e57628. [Google Scholar] [CrossRef]
- Keogh, A.; Dorn, J.F.; Walsh, L.; Calvo, F.; Caulfield, B. Comparing the Usability and Acceptability of Wearable Sensors Among Older Irish Adults in a Real-World Context: Observational Study. JMIR mHealth uHealth 2020, 8, e15704. [Google Scholar] [CrossRef]
- Kaur, P.D.; Sharma, P. IC-SMART: IoTCloud enabled Seamless Monitoring for Alzheimer Diagnosis and Rehabilitation SysTem. J. Ambient. Intell. Humaniz. Comput. 2019, 11, 3387–3403. [Google Scholar] [CrossRef]
- McGoldrick, C.; Crawford, S.; Evans, J.J. MindMate: A single case experimental design study of a reminder system for people with dementia. Neuropsychol. Rehabil. 2019, 31, 18–38. [Google Scholar] [CrossRef]
- Guarducci, S.; Panconi, G.; Mucchi, L.; Minciacchi, D.; Bravi, R. Wireless Sensor Insoles for Assessing Load Distribution and Plantar Pressures in Persons with Orthopedic Conditions within a Home Environment: A Case Report. In Proceedings of the 2025 19th International Symposium on Medical Information and Communication Technology (ISMICT), Florence, Italy, 28–30 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Sarkar, M.; Lee, T.H.; Sahoo, P.K. Smart Healthcare: Exploring the Internet of Medical Things with Ambient Intelligence. Electronics 2024, 13, 2309. [Google Scholar] [CrossRef]
- Zon, M.; Ganesh, G.; Deen, M.J.; Fang, Q. Context-Aware Medical Systems within Healthcare Environments: A Systematic Scoping Review to Identify Subdomains and Significant Medical Contexts. Int. J. Environ. Res. Public Health 2023, 20, 6399. [Google Scholar] [CrossRef] [PubMed]
- Kamenetzky, A.; Hinrichs-Krapels, S. How do organisations implement research impact assessment (RIA) principles and good practice? A narrative review and exploratory study of four international research funding and administrative organisations. Health Res. Policy Syst. 2020, 18, 6. [Google Scholar] [CrossRef]
- Jayousi, S.; Barchielli, C.; Alaimo, M.; Guarducci, S.; Caputo, S.; Paffetti, M.; Zoppi, P.; Mucchi, L. Improving Community Healthcare Assistance Through an Innovative and Multidisciplinary Systemic Approach. In Proceedings of the 2024 18th International Symposium on Medical Information and Communication Technology (ISMICT), London, UK, 15–17 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Jayousi, S.; Barchielli, C.; Alaimo, M.; Guarducci, S.; Caputo, S.; Paffetti, M.; Zoppi, P.; Mucchi, L. Health Community 4.0: An Innovative Multidisciplinary Solution for Tailored Healthcare Assistance Management. Sensors 2024, 24, 6059. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Svempe, L. Exploring Impediments Imposed by the Medical Device Regulation EU 2017/745 on Software as a Medical Device. JMIR Med. Inform. 2024, 12, e58080. [Google Scholar] [CrossRef]
- Torous, J.; Myrick, K.J.; Rauseo-Ricupero, N.; Firth, J. Digital mental health and COVID-19: Using technology today to accelerate the curve on access and quality tomorrow. JMIR Ment. Health 2020, 7, e18848. [Google Scholar] [CrossRef]
- López, M.d.P.; Ong, B.A.; Borrat Frigola, X.; Fernández, A.L.; Hicklent, R.S.; Obeles, A.J.T.; Rocimo, A.M.; Celi, L.A. Digital literacy as a new determinant of health: A scoping review. PLoS Digit. Health 2023, 2, e0000279. [Google Scholar] [CrossRef]
- Tinmaz, H.; Lee, Y.T.; Fanea-Ivanovici, M.; Baber, H. A systematic review on digital literacy. Smart Learn. Environ. 2022, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.; Cotten, S.R.; Ono, H.; Quan-Haase, A.; Mesch, G.; Chen, W.; Schulz, J.; Hale, T.M.; Stern, M.J. Digital inequalities and why they matter. Inf. Commun. Soc. 2015, 18, 569–582. [Google Scholar] [CrossRef]
- Baber, H.; Fanea-Ivanovici, M.; Lee, Y.T.; Tinmaz, H. A bibliometric analysis of digital literacy research and emerging themes pre-during COVID-19 pandemic. Inf. Learn. Sci. 2022, 123, 545–566. [Google Scholar] [CrossRef]
- Beaunoyer, E.; Dupéré, S.; Guitton, M.J. COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Comput. Hum. Behav. 2020, 111, 106424. [Google Scholar] [CrossRef]
- Rousseau, J.; Gibbs, L.; Garcia-Cabrera, C.; Runge, A.; Palmer, C.; Haria, J.; Eichinger, M.; Lee, J.-A. A pioneering EMR-embedded digital health literacy tool reveals healthcare disparities for diverse older adults. J. Am. Geriatr. Soc. 2024, 72, S97–S104. [Google Scholar] [CrossRef]
- Veinot, T.C.; Mitchell, H.; Ancker, J.S. Good intentions are not enough: How informatics interventions can worsen inequality. J. Am. Med. Inform. Assoc. 2018, 25, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Berkman, N.D.; Sheridan, S.L.; Donahue, K.E.; Halpern, D.J.; Viera, A.; Crotty, K.; Holl, A.; Brasure, M.; Lohr, K.N.; Harden, E.; et al. Health literacy interventions and outcomes: An updated systematic review. In Technical Report 199; Evidence Report Technology Assessment (Full Rep); Agency for Healthcare Research and Quality (AHRQ): Rockville, MD, USA, 2011. [Google Scholar]
- World Health Organization. Global Strategy on Digital Health 2020–2025. 2020. Available online: https://www.who.int/publications/i/item/9789240020924 (accessed on 30 September 2025).
- Kvedar, J.; Coye, M.J.; Everett, W. Connected health: A review of technologies and strategies to improve patient care with telemedicine and telehealth. Health Aff. 2014, 33, 194–199. [Google Scholar] [CrossRef]
- Patel, M.S.; Asch, D.A.; Rosin, R.; Small, D.S.; Bellamy, S.L.; Heuer, J.; Sproat, S.; Hyson, C.; Haff, N.; Lee, S.M.; et al. Framing financial incentives to increase physical activity among overweight and obese adults: A randomized, controlled trial. Ann. Intern. Med. 2016, 164, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous wearable monitoring analytics predict heart failure hospitalization: The LINK-HF multicenter study. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef]
- Kruse, C.S.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating barriers to adopting telemedicine worldwide: A systematic review. J. Telemed. Telecare 2018, 24, 4–12. [Google Scholar] [CrossRef]
- Gomes, M.; Murray, E.; Raftery, J. Economic evaluation of digital health interventions: Methodological issues and recommendations for practice. Pharmacoeconomics 2022, 40, 367–378. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 21 May 2024 on Artificial Intelligence Systems (Artificial Intelligence Act). 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng (accessed on 30 September 2025).
- European Union. Regulation (EU) 2025/327 of the European Parliament and of the Council of 11 February 2025 Establishing the European Health Data Space and Amending Directive 2011/24/EU and Regulation (EU) 2024/2847. 2025. Available online: https://eur-lex.europa.eu/eli/reg/2025/327/oj/eng (accessed on 30 September 2025).
- Stahl, B.C.; Akintoye, S.; Bitsch, L.; Bringedal, B.; Eke, D.; Farisco, M.; Grasenick, K.; Guerrero, M.; Knight, W.; Leach, T.; et al. From Responsible Research and Innovation to responsibility by design. J. Responsible Innov. 2021, 8, 175–198. [Google Scholar] [CrossRef]
- Van Velthoven, M.H.; Cordon, C. Sustainable adoption of digital health innovations: Perspectives from a stakeholder workshop. J. Med. Internet Res. 2019, 21, e11922. [Google Scholar] [CrossRef] [PubMed]

| Category | Identified Barriers | Impacts |
|---|---|---|
| Technological | Lack of interoperability, siloed systems, limited AI explainability, weak edge AI validation, poor system adaptability | Limited scalability and integration, workflow disruptions, reduced decision accuracy |
| Organizational | Rigid workflows, lack of training, cognitive overload | Low adoption, clinician burnout |
| Ethical/Regulatory | Privacy, explainability, data protection issues | Legal risks, mistrust, inequity |
| Human-Centered | Device discomfort, low digital literacy | Low adherence, user dropout |
| Area | Key Strategy or Tool | Description |
|---|---|---|
| Contextual Adaptation and Participatory Design | Alignment with clinical workflows, co-design with end-users | Ensures contextual fit, cultural sensitivity, and user acceptance of IoMT system |
| Technology and Infrastructure | Edge–cloud architectures, HL7 FHIR middleware | Enables low-latency, secure, and interoperable data management across platforms |
| Governance and Oversight (*) | Multidisciplinary health boards, digital steering committees | Facilitates coordination, accountability, and alignment with health policies |
| Training and Digital Readiness | Continuing education, onboarding programs | Builds capacity among professionals and patients to engage with digital tools |
| Regulation and Validation | Clinical evaluation, MDR compliance, explainability frameworks | Ensures reliability, legal compliance, and trustworthy use of IoMT |
| Equity and Accessibility (**) | Hybrid models, multilingual support, outreach strategies | Addresses the digital divide and promotes inclusion of underserved populations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayousi, S.; Barchielli, C.; Guarducci, S.; Alaimo, M.; Caputo, S.; Zoppi, P.; Mucchi, L. From Innovation to Integration: Bridging the Gap Between IoMT Technologies and Real-World Health Management Systems. Sensors 2025, 25, 6660. https://doi.org/10.3390/s25216660
Jayousi S, Barchielli C, Guarducci S, Alaimo M, Caputo S, Zoppi P, Mucchi L. From Innovation to Integration: Bridging the Gap Between IoMT Technologies and Real-World Health Management Systems. Sensors. 2025; 25(21):6660. https://doi.org/10.3390/s25216660
Chicago/Turabian StyleJayousi, Sara, Chiara Barchielli, Sara Guarducci, Marco Alaimo, Stefano Caputo, Paolo Zoppi, and Lorenzo Mucchi. 2025. "From Innovation to Integration: Bridging the Gap Between IoMT Technologies and Real-World Health Management Systems" Sensors 25, no. 21: 6660. https://doi.org/10.3390/s25216660
APA StyleJayousi, S., Barchielli, C., Guarducci, S., Alaimo, M., Caputo, S., Zoppi, P., & Mucchi, L. (2025). From Innovation to Integration: Bridging the Gap Between IoMT Technologies and Real-World Health Management Systems. Sensors, 25(21), 6660. https://doi.org/10.3390/s25216660

