Ship Motion Attitude Prediction Model Based on FMD-IBKA-BTGN
Abstract
1. Introduction
- The BTGN model integrates bidirectional TCN and GRU networks, effectively capturing both forward and backward temporal dynamics to enhance prediction accuracy.
- FMD simultaneously accounts for impulsive and periodic characteristics in the data, enabling more thorough decomposition and thereby improving the learning capability of BTGN.
- IBKA incorporates dual chaotic mapping and Lévy flight strategies to promote global convergence, effectively tuning BTGN parameters and enhancing the performance of the hybrid model.
2. Methods
2.1. Data Decomposition
- (1)
- Initialize the FIR filter bank with Hann windows
- (2)
- Updating the filter and period
- (3)
- Mode Selection
- (4)
- Signal Reconstruction
2.2. Hybrid Bidirectional Temporal Convolutional Network and Bidirectional Gated Recurrent Unit Model
2.2.1. Bi-TCN
2.2.2. Bi-GRU

2.2.3. BTGN Model
2.3. Improved Black Kite Algorithm
- (1)
- Population Initialization:
- (2)
- Attack Behavior
- (3)
- Migration Behavior
| Algorithm 1: Improved Black—Winged Kite Algorithm |
| Input: The population size pop, maximum number of iterations T, and variable dimension dim Output: The best quasi-optimal solution obtained by IBKA for a given optimization problem 1. Initialization phase 2. Initialize the population size using logistic-Tent chaotic mapping and calculate the target fitness value of the population 3. while (t < T)do 4. /*Attacking behavior*/ 5. The location update parameter is updated as shown in Formula (15) 6. /*Migration behavior*/ 7. The location update parameter is updated as shown in Formula (16) 8. /*Select the best individual*/ 9. Check if it exceeds the search space and calculate fitness 10. Update individual optimal position if there is a better solution 11. t = t + 1 12. End while 13. Return best position and fitness value |

2.4. Effectiveness Analysis of IBKA
3. FMD-IBKA-BTGN Model
4. Experimental Analysis
4.1. Experimental Environment
4.2. Data Preprocessing
4.3. Evaluation Metrics
4.4. IBKA Optimization of Model Parameters
4.5. Experimental Result Analysis
4.5.1. Selection and Comparison of Predictive Steps
4.5.2. FMD
4.5.3. Experimental Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Z.Q.; Wu, C.L.; Xiao, Y.J.; He, H.D. Study on the prediction model of accidents and incidents of cruise ship operation based on machine learning. Ocean Eng. 2022, 260, 111954. [Google Scholar] [CrossRef]
- Garcia-Huerta, R.A.; González-Jiménez, L.E.; Villalon-Turrubiates, I.E. Sensor fusion algorithm using a model-based Kalman filter for the position and attitude estimation of precision aerial delivery systems. Sensors 2020, 20, 5227. [Google Scholar] [CrossRef]
- Tang, G.; Yao, X.Q.; Li, F.R.; Wang, Y.D.; Hu, X. Prediction about the vessel’s heave motion under different sea states based on hybrid PSO-ARMA model. Ocean Eng. 2022, 263, 112247. [Google Scholar] [CrossRef]
- Chen, M.Z.; Challita, U.; Saad, W.; Yin, C.C.; Debbah, M. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun. Surv. Tut. 2019, 21, 3039–3071. [Google Scholar] [CrossRef]
- Suhermi, N.; Prastyo, D.D.; Ali, B. Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia Comput. Sci. 2018, 144, 251–258. [Google Scholar] [CrossRef]
- Suo, Y.; Chen, W.; Claramunt, C.; Yang, S. A ship trajectory prediction framework based on a recurrent neural network. Sensors 2020, 20, 5133. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Peng, H.; Qie, X.; Zhao, X.; Lu, C. A simultaneous planning and control method integrating APF and MPC to solve autonomous navigation for USVs in unknown environments. J. Intell. Robot. Syst. 2022, 105, 36. [Google Scholar] [CrossRef]
- Tang, G.; Lei, J.M.; Shao, C.T.; Hu, X.; Cao, W.D.; Men, S. Short-term prediction in vessel heave motion based on improved LSTM model. IEEE Access 2021, 9, 58067–58078. [Google Scholar] [CrossRef]
- Sun, P.; Boukerche, A.; Tao, Y.J. SSGRU: A novel hybrid stacked GRU-based traffic volume prediction approach in a road network. Comput. Commun. 2020, 160, 502–511. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, X.; Liu, C.; He, Z.; Zhang, P.; Wu, W. A review on motion prediction for intelligent ship navigation. J. Mar. Sci. Eng. 2024, 12, 107. [Google Scholar] [CrossRef]
- Wang, H.F.; Yin, J.C.; Wang, N.N.; Wang, L.J. A multi-dimensional data-driven ship roll prediction model based on VMD-PCA and IDBO-TCN-BiGRU-Attention. Front. Mar. Sci. 2025, 12, 1547933. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, X.C.; Wang, L.; Gong, B.M.; Ai, J.L. A hybrid ship-motion prediction model based on CNN-MRNN and IADPSO. Ocean Eng. 2024, 299, 117428. [Google Scholar] [CrossRef]
- Su, Y.; Lin, J.; Zhao, D.; Guo, C.; Wang, C.; Guo, H. Real-time prediction of large-scale ship model vertical acceleration based on recurrent neural network. J. Mar. Sci. Eng. 2020, 8, 777. [Google Scholar] [CrossRef]
- Ullah, S.; Kim, D.H. Lightweight driver behavior identification model with sparse learning on in-vehicle CAN-bus sensor data. Sensors 2020, 20, 5030. [Google Scholar] [CrossRef]
- Zhao, J.X.; Zhao, Y. An enhanced model based on deep operator network for very short-term forecasting of ship motion. Phys. Fluids 2024, 36, 082103. [Google Scholar] [CrossRef]
- Peng, X.Y.; Zhang, B. Ship motion attitude prediction based on EMD-PSO-LSTM combined model. J. Chin. Inert. Technol. 2019, 27, 421–426. [Google Scholar]
- Chen, Y.; Sun, B.; Xie, X.; Li, X.; Li, Y.; Zhao, Y. Short-term forecasting for ship fuel consumption based on deep learning. Ocean Eng. 2024, 301, 117398. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Ren, H.; Li, C.; Han, J. The prediction of ship motion attitude in seaway based on BSO-VMD-GRU combination model. Ocean Eng. 2023, 288, 115977. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, B.; Li, C.; Lin, J.; Zhang, D. Feature mode decomposition: New decomposition theory for rotating machinery fault diagnosis. IEEE Trans. Ind. Electron. 2022, 70, 1949–1960. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Deng, L.; Jia, M.; Xu, J. Ship motion attitude prediction model based on IWOA-TCN-Attention. Ocean Eng. 2023, 272, 113911. [Google Scholar] [CrossRef]
- Li, Y.; Shi, B.; Qiao, W.; Du, Z. A black-winged kite optimization algorithm enhanced by osprey optimization and vertical and horizontal crossover improvement. Sci. Rep. 2025, 15, 6737. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Zheng, B.; Chen, Y. Path planning problem solved by an improved black-winged kite optimization algorithm based on multi-strategy fusion. Int. J. Mach. Learn. Cybern. 2025, 16, 7859–7895. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Yue, Y. Heuristic optimization algorithm of Black-Winged Kite fused with osprey and its engineering application. Biomimetics 2024, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Li, M.W.; Xu, R.Z.; Geng, J.; Hong, W.C.; Li, H. A ship motion forecasting approach based on Fourier transform, regularized Bi-LSTM and chaotic quantum adaptive WOA. Ocean Eng. 2024, 313, 119560. [Google Scholar] [CrossRef]
- Gao, N.; Chuang, Z.; Hu, A. Real-Time Prediction of Ship Motion Based on Improved Empirical Mode Composition and Dynamic Residual Neural Network. Ocean Eng. 2024, 292, 116528. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Crested Porcupine Optimizer: A New Nature-Inspired Metaheuristic. Knowl.-Based Syst. 2024, 284, 111257. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
















| Number | Formula | Value Interval | Theoretical Optimum |
|---|---|---|---|
| F1 | 0 | ||
| F2 | 0 | ||
| F3 | 0 | ||
| F4 | 0 | ||
| F5 | −12,569.5 | ||
| F6 | 0 | ||
| F7 | 0 | ||
| F8 | 0 |
| Number | IBKA | BKA | WOA | CPO | PSO | GA | GWO |
|---|---|---|---|---|---|---|---|
| F1 | 4.84 × 10−20 | 7.65 × 10−17 | 52.1821 | 5.70976 | 1.37535 | 61.9362 | 5.51 × 10−6 |
| F2 | 0.0001 | 0.00486 | 0.54084 | 0.00679 | 3.58147 | 3.15346 | 0.60223 |
| F3 | 1.73 × 10−7 | 0.00017 | 0.40455 | 0.00325 | 2.54143 | 205.192 | 0.72262 |
| F4 | 0.0 | 0.0 | 0.00608 | 0.00256 | 2.56298 | 2161.99 | 2.49 × 10−7 |
| F5 | −350.92 | −329.59 | −340.24 | −259.69 | −310.98 | −125.691 | −279.011 |
| F6 | 0.0 | 0.0 | 2.39 × 10−14 | 49.33893 | 156.8184 | 227.1569 | 4.16582 |
| F7 | 0.0 | 0.0 | 0.00431 | 0.08721 | 0.267312 | 120.2302 | 0.003422 |
| F8 | 3.44 × 10−16 | 6.99 × 10−16 | 3.45 × 10−14 | 2.67231 | 2.975234 | 19.75423 | 1.25 × 10−12 |
| Parameter | Value |
|---|---|
| Length Overall (m) | 240 |
| Beam (m) | 45 |
| Draft (m) | 8 |
| Displacement (t) | 32,000 |
| Parameter | Value Interval |
|---|---|
| epoch | [20, 100] |
| batch_size | [8, 128] |
| nb_filters | [16, 128] |
| kernel_size | [2, 10] |
| hidden_size | [10, 200] |
| Parameter | Value Interval |
|---|---|
| epoch | 42 |
| batch_size | 12 |
| nb_filters | 87 |
| kernel_size | 5 |
| hidden_size | 50 |
| Method | Items | Values |
|---|---|---|
| FMD | filtersize | 30 |
| cutnum | 7 | |
| mode number | 6 | |
| VMD | penalty Coefficient | 2000 |
| mode number | 6 | |
| EMD | termination conditions | 0.01 |
| termination conditions | 0.1 | |
| tolerance | 0.01 |
| Method | FMD-BTGN | VMD-BTGN | EMD-BTGN | |
|---|---|---|---|---|
| MSE | roll | 0.0053 | 0.0363 | 0.0096 |
| pitch | 0.0009 | 0.0019 | 0.0026 | |
| heave | 0.0027 | 0.0039 | 0.0061 | |
| MAE | roll | 0.0569 | 0.1492 | 0.0752 |
| pitch | 0.0247 | 0.0346 | 0.0440 | |
| heave | 0.0456 | 0.0519 | 0.0675 | |
| RMSE | roll | 0.0728 | 0.1906 | 0.0984 |
| pitch | 0.0296 | 0.0436 | 0.0512 | |
| heave | 0.0520 | 0.0630 | 0.0784 | |
| MAPE | roll | 68.5696 | 140.871 | 71.9932 |
| pitch | 29.8029 | 35.3957 | 43.3955 | |
| heave | 35.0247 | 56.3129 | 69.6440 | |
| roll | 0.9071 | 0.7965 | 0.8742 | |
| pitch | 0.9442 | 0.9223 | 0.9173 | |
| heave | 0.8978 | 0.8964 | 0.8876 |
| Method | Items | Values |
|---|---|---|
| BTGN | epoch | 50 |
| batch_size | 32 | |
| nb_filters | 64 | |
| kernel_size | 4 | |
| hidden_size | 128 | |
| FMD-IBKA-BTGN | epoch | 42 |
| batch_size | 12 | |
| nb_filters | 87 | |
| kernel_size | 5 | |
| hidden_size | 50 | |
| CNN-BiGRU/CNN-BiLSTM/GRU/LSTM | epoch | 50 |
| Batch_size | 32 | |
| filters | 64 | |
| kernel_size | 2 | |
| hidden_size | 128 |
| FMD-IBKA-BTGN | FMD-BKA-BTGN | BTGN | CNN-BiLSTM | CNN-BiGRU | GRU | LSTM | ||
|---|---|---|---|---|---|---|---|---|
| MSE | roll | 0.0001 | 0.0050 | 0.0203 | 0.0119 | 0.0057 | 0.0125 | 0.0132 |
| pitch | 0.0001 | 0.0018 | 0.0053 | 0.0032 | 0.0028 | 0.0047 | 0.0057 | |
| heave | 0.0002 | 0.0004 | 0.0106 | 0.0028 | 0.0016 | 0.0031 | 0.0108 | |
| MAE | roll | 0.0065 | 0.0548 | 0.1277 | 0.0949 | 0.0056 | 0.0964 | 0.0654 |
| pitch | 0.0035 | 0.0037 | 0.0696 | 0.0456 | 0.0407 | 0.0674 | 0.0503 | |
| heave | 0.0231 | 0.0276 | 0.0981 | 0.0432 | 0.0341 | 0.0541 | 0.0438 | |
| RMSE | roll | 0.0140 | 0.0710 | 0.1425 | 0.1089 | 0.0755 | 0.1118 | 0.1149 |
| pitch | 0.0140 | 0.0431 | 0.0733 | 0.0569 | 0.0527 | 0.0686 | 0.0755 | |
| heave | 0.0447 | 0.0220 | 0.1032 | 0.0532 | 0.0406 | 0.0557 | 0.1039 | |
| MAPE | roll | 10.0756 | 19.1781 | 48.6832 | 30.7462 | 28.9219 | 33.6735 | 35.4219 |
| pitch | 11.3568 | 15.4987 | 20.8804 | 25.5054 | 22.0030 | 19.4521 | 21.9648 | |
| heave | 12.6535 | 16.5483 | 36.2201 | 22.9875 | 20.4851 | 25.7438 | 37.8527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Su, Y.; Zhang, B. Ship Motion Attitude Prediction Model Based on FMD-IBKA-BTGN. Sensors 2025, 25, 6602. https://doi.org/10.3390/s25216602
Shi C, Su Y, Zhang B. Ship Motion Attitude Prediction Model Based on FMD-IBKA-BTGN. Sensors. 2025; 25(21):6602. https://doi.org/10.3390/s25216602
Chicago/Turabian StyleShi, Chunyuan, Yanguan Su, and Biao Zhang. 2025. "Ship Motion Attitude Prediction Model Based on FMD-IBKA-BTGN" Sensors 25, no. 21: 6602. https://doi.org/10.3390/s25216602
APA StyleShi, C., Su, Y., & Zhang, B. (2025). Ship Motion Attitude Prediction Model Based on FMD-IBKA-BTGN. Sensors, 25(21), 6602. https://doi.org/10.3390/s25216602

