PM2.5 Pollution Decrease in Paris, France, for the 2013–2024 Period: An Evaluation of the Local Source Contributions by Subtracting the Effect of Wind Speed
Highlights
- A direct link is highlighted between PM2.5 mass-concentrations and wind speed in Paris, France.
- The PM2.5 levels are decreasing with increasing wind speed, up to an inflection point at 6 m·s−1 from which the PM2.5 levels remain almost constant.
- The trend for PM2.5 mass-concentration decrease can be estimated by subtracting the effect of wind speed.
- The PM2.5 background contribution due to local emission sources can be estimated to be of around 4% per year in Paris.
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Uncorrected PM2.5 Trends
3.2. Effect of Wind on PM2.5 Mass-Concentration Levels
3.3. Time-Evolution PM2.5 Mass-Concentrations During Strong Winds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Forastiere, F.; Balmes, J.; Garcia, E.; Harkema, J.; Holgate, S.; Kelly, F.; Khreis, H.; Hoffmann, B.; Maesano, C.N.; et al. The clear and persistent impact of air pollution on chronic respiratory diseases: A call for interventions. Eur. Respir. J. 2021, 57, 2002981. [Google Scholar] [CrossRef] [PubMed]
- Maesano, C.N.; Morel, G.; Matynia, A.; Ratsombath, N.; Bonnety, J.; Legros, G.; Da Costa, P.; Prud’homme, J.; Annesi-Maesano, I. Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci. Total Environ. 2020, 698, 134257. [Google Scholar] [CrossRef]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhong, K.; Islam, M.A.; Sakunkoo, P. An update on adverse health effects from exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- Anderson, J.; Thundiyil, J.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2011, 8, 166–175. [Google Scholar] [CrossRef]
- Monteiller, C.; Tran, L.; MacNee, W.; Faux, S.; Jones, A.; Miller, B.; Donaldson, K. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup. Environ. Med. 2007, 64, 609–615. [Google Scholar] [CrossRef]
- Bové, H.; Bongaerts, E.; Slenders, E.; Bijnens, E.M.; Saenen, N.D.; Gyselaers, W.; Van Eyken, P.; Plusquin, M.; Roeffaers, M.B.J.; Ameloot, M.; et al. Ambient black carbon particles reach the fetal side of human placenta. Nat. Commun. 2019, 10, 3866. [Google Scholar] [CrossRef]
- de Prado Bert, P.; Mae Henderson Mercader, E.; Pujol, J.; Sunyer, J.; Mortamais, M. The effects of air pollution on the brain: A review of studies interfacing environmental epidemiology and neuroimaging. Curr. Environ. Health Rep. 2018, 5, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Shehab, M.A.; Pope, F.D. Effects of short-term exposure to particulate matter air pollution on cognitive performance. Sci. Rep. 2019, 9, 8237. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Renard, J.-B.; Surcin, J.; Annesi-Maesano, I.; Delaunay, G.; Poincelet, E.; Dixsaut, G. Relation between PM2.5 pollution and COVID-19 mortality in Western Europe for the 2020–2022 period. Sci. Total Environ. 2022, 848, 157579. [Google Scholar] [CrossRef]
- Renard, J.-B.; Surcin, J.; Annesi-Maesano, I.; Poincelet, E. Temporal Evolution of PM2.5 Levels and COVID-19 Mortality in Europe for the 2020–2022 Period. Atmosphere 2023, 14, 1222. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Delbari, S.H.; Shahne, M.Z.; Hosseini, V. An Analysis of Primary Contributing Sources to the PM2.5 Composition in a Port City in Canada Influenced by Traffic, Marine, and Wildfire Emissions. Atmos. Environ. 2024, 334, 120712. [Google Scholar] [CrossRef]
- Kerschbaumer, A.; Stern, R.; Lutz, M. Origin and influence of PM10 concentrations in urban and in rural environments. In Air Pollution Modeling and Its Application XIX; NATO Science for Peace and Security Series, Serie C: Environmental Security; Borrego, C., Miranda, A.I., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 72–80. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM 2.5 and PM 10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240034228. [Google Scholar]
- Available online: https://environment.ec.europa.eu/news/new-pollution-rules-come-effect-cleaner-air-2030-2024-12-10_en (accessed on 24 July 2025).
- Available online: https://theicct.org/wp-content/uploads/2021/06/Paris_pollution_heath_issues_transport_factsheet_20190226.pdf (accessed on 11 September 2025).
- Ghersi, V.; Rosso, A.; Moukhtar, S.; Lameloise, P.; Sciare, J.; Bressi, M.; Nicolas, J.; Féron, A.; Bonnaire, N. A comprehensive source apportionment study of fine aerosol (PM2.5) in the region of Paris, France. Pollut. Atmos. 2012, 12, 63–72. [Google Scholar]
- Freutel, F.; Schneider, J.; Drewnick, F.; von der Weiden-Reinmüller, S.-L.; Crippa, M.; Prévôt, A.S.H.; Baltensperger, U.; Poulain, L.; Wiedensohler, A.; Sciare, J.; et al. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: Meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmos. Chem. Phys. 2013, 13, 933–959. [Google Scholar] [CrossRef]
- Couvidat, F.; Kim, Y.; Sartelet, K.; Seigneur, C.; Marchand, N.; Sciare, J. Modeling secondary organic aerosol in an urban area: Application to Paris, France. Atmos. Chem. Phys. 2013, 13, 983–996. [Google Scholar] [CrossRef]
- Petetin, H.; Sciare, J.; Bressi, M.; Gros, V.; Rosso, A.; Sanchez, O.; Sarda-Estève, R.; Petit, J.-E.; Beekmann, M. Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model. Atmos. Chem. Phys. 2016, 16, 10419–10440. [Google Scholar] [CrossRef]
- Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; et al. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmos. Chem. Phys. 2015, 15, 9577–9591. [Google Scholar] [CrossRef]
- Petit, J.E.; Amodeo, T.; Meleux, F.; Bessagnet, B.; Menut, L.; Grenier, D.; Favez, O. Characterising an intense PM pollution episode in March 2015 in France from multi-site approach and near real time data: Climatology, variabilities, geographical origins and model evaluation. Atmos. Environ. 2017, 155, 68–84. [Google Scholar] [CrossRef]
- Viatte, C.; Petit, J.-E.; Yamanouchi, S.; Van Damme, M.; Doucerain, C.; Germain-Piaulenne, E.; Gros, V.; Favez, O.; Clarisse, L.; Coheur, P.-F.; et al. Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere 2021, 12, 160. [Google Scholar] [CrossRef]
- Available online: https://www.paris.fr/pages/avant-de-devenir-un-boulevard-urbain-le-peripherique-etait-appele-la-zone-28731 (accessed on 11 September 2025).
- Foret, G.; Michoud, V.; Kotthaus, S.; Petit, J.-E.; Baudic, A.; Siour, G.; Kim, Y.; Doussin, J.-F.; Dupont, J.-C.; Formenti, P.; et al. The December 2016 extreme weather and particulate matter pollution episode in the Paris region (France). Atmos. Environ. 2022, 291, 119386. [Google Scholar] [CrossRef]
- Renard, J.-B.; Poincelet, E.; Annesi-Maesano, I.; Surcin, J. Spatial distribution of PM2.5 mass and number concentrations in Paris (France) from the Pollutrack network of mobile sensors in the 2018–2022 period. Sensors 2023, 23, 8560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, J.; Xiang, S.; Zhang, Y.; Wang, Y.; Ge, W.; Hu, J.; Wan, Y.; Wang, X.; Liu, Y.; et al. Evaluation of the Street Canyon Level Air Pollution Distribution Pattern in a Typical City Block in Baoding, China. Int. J. Environ. Res. Public Health 2022, 19, 10432. [Google Scholar] [CrossRef]
- Renard, J.-B.; Marchand, C. High Resolution Mapping of PM2.5 Concentrations in Paris (France) Using Mobile Pollutrack Sensors Network in 2020. Atmosphere 2021, 12, 529. [Google Scholar] [CrossRef]
- Faradonbeh, M.A.; Mardani, G.; Shahraki, H.R. Longitudinal Trends of the Annual Exposure to PM2.5 Particles in European Countries. Scientifica 2021, 2021, 8922798. [Google Scholar] [CrossRef]
- Aas, W.; Fagerli, H.; Alastuey, A.; Cavalli, F.; Degorska, A.; Feigenspan, S.; Brenna, H.; Gliß, J.; Heinesen, D.; Hueglin, C.; et al. Trends in Air Pollution in Europe, 2000–2019. Aerosol Air Qual. Res. 2024, 24, 230237. [Google Scholar] [CrossRef]
- Available online: https://www.airparif.fr/etudes/2025/bilan-de-la-qualite-de-lair-ile-de-france-2024 (accessed on 24 July 2025).
- Cichowicz, R.; Wielgosinski, G.; Fetter, W. Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. J. Atmos. Chem. 2020, 77, 35–48. [Google Scholar] [CrossRef]
- Graham, A.M.; Pringle, K.J.; Arnold, S.R.; Pope, R.J.; Vieno, M.; Butt, E.W.; Conibear, L.; Stirling, E.L.; McQuaid, J.B. Impact of weather types on UK ambient particulate matter concentrations. Atmos. Environ. X 2020, 5, 100061. [Google Scholar] [CrossRef]
- Zhang, B.; Jiao, L.; Xu, G.; Zhao, S.; Tang, X.; Zhou, Y.; Chen, G. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorol. Atmos. Phys. 2018, 130, 383–392. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Ou, C.-Q.; Zhou, Y.X.; Guo, C.; Guo, Y. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ. Poll. 2014, 190, 75–81. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Horowitz, L.W.; Naik, V.; Tai, A.P.K.; Fiore, A.M.; Mauzerall, D.L. Quantifying PM2.5-meteorology sensitivities in a global climate model. Atmos. Environ. 2016, 142, 43–56. [Google Scholar] [CrossRef]
- Tian, G.; Qiao, Z.; Xu, X. Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001–2012 in Beijing. Environ. Pollut. 2014, 192, 266–274. [Google Scholar] [CrossRef]
- McMullen, N.; Annesi-Maesano, I.; Renard, J.-B. Impact of rain precipitation on urban atmospheric particle matter measured at three locations in France between 2013 and 2019. Atmosphere 2021, 12, 769. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Bai, X.; Tan, H.; Li, S.; Liu, J.; Zhang, R.; Wolters, M.A.; Qin, X.; Zhang, M.; et al. Large-scale transport of PM2.5 in the lower troposphere during winter cold surges in China. Sci. Rep. 2017, 7, 13238. [Google Scholar] [CrossRef] [PubMed]
- Lianou, M.; Chalbot, M.-C.; Vei, I.-C.; Kotronarou, A.; Kavouras, I.; Hoek, G.; Hameri, K.; Harrison, R. The impact of wind on particle mass concentrations in four European urban areas. Glob. Nest J. 2013, 15, 188–194. [Google Scholar]
- Borge, R.; Lumbreras, J.; Vardoulakis, S.; Kassomenos, P.; Rodríguez, E. Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmos. Environ. 2007, 41, 4434–4450. [Google Scholar] [CrossRef]
- Velásquez-García, M.P.; Hernández, K.S.; Vergara-Correa, J.A.; Pope, R.J.; Gómez-Marín, M.; Rendón, A.M. Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America. Atmos. Chem. Phys. 2024, 24, 11497–11520. [Google Scholar] [CrossRef]
- Available online: https://data-airparif-asso.opendata.arcgis.com/search?tags=pm25 (accessed on 24 July 2025).
- Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj/eng (accessed on 24 July 2025).
- Crilley, L.R.; Singh, A.; Kramer, L.J.; Shaw, M.D.; Alam, M.S.; Apte, J.S.; Bloss, W.J.; Ruiz, L.H.; Fu, P.; Fu, W.; et al. Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmos. Meas. Tech. 2020, 13, 1181–1193. [Google Scholar] [CrossRef]
- Tursumbayeva, M.; Kerimray, A.; Karaca, F.; Permadi, D.A. Planetary Boundary Layer and its Relationship with PM2.5 Concentrations in Almaty, Kazakhstan. Aerosol Air Qual. Res. 2022, 22, 210294. [Google Scholar] [CrossRef]
- Maison, A.; Lugon, L.; Park, S.-J.; Boissard, C.; Faucheux, A.; Gros, V.; Kalalian, C.; Kim, Y.; Leymarie, J.; Petit, J.-E.; et al. Contrasting effects of urban trees on air quality: From the aerodynamic effects in streets to impacts of biogenic emissions in cities. Sci. Total Environ. 2024, 946, 174116. [Google Scholar] [CrossRef] [PubMed]
- Squarcioni, A.; Roustan, Y.; Valari, M.; Kim, Y.; Sartelet, K.; Lugon, L.; Dugay, F.; Voitot, R. To what extent is the description of streets important in estimating local air quality: A case study over Paris. Atmos. Chem. Phys. 2025, 25, 93–117. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Y.; Ooka, R.; Flageul, C.; Kim, Y.; Kikumoto, H.; Wang, Z.; Sartelet, K. Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD. Atmos. Chem. Phys. 2023, 23, 1421–1436. [Google Scholar] [CrossRef]
- Available online: https://cdn.paris.fr/paris/2023/11/22/chiffrescles_bilan_vf-dE0X.pdf (accessed on 31 August 2025).
- Chow, W.S.; Liao, K.; Huang, X.H.H.; Leung, K.F.; Lau, A.K.H.; Yu, J.Z. Measurement report: The 10-year trend of PM2.5 major components and source tracers from 2008 to 2017 in an urban site of Hong Kong, China. Atmos. Chem. Phys. 2022, 22, 11557–11577. [Google Scholar] [CrossRef]
- Piras, G.; Pini, F.; Di Girolamo, P. PM10 emissions from tires: A disruptive estimate questioning present pollution mitigation strategies. Atmos. Pollut. Res. 2024, 15, 101939. [Google Scholar] [CrossRef]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation. measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate matter emission and air pollution reduction by applying variable systems in tribologically optimized diesel engines for vehicles in road traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Font, A.; Ciupek, K.; Butterfield, D.; Fuller, G.W. Long-term trends in particulate matter from wood burning in the United Kingdom: Dependence on weather and social factors. Environ. Pollut. 2022, 314, 120105. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef]
- Abbou, G.; Ghersi, V.; Gaie-Levrel, F.; Kauffmann, A.; Reynaud, M.; Debert, C.; Quénel, P.; Baudic, A. Ultrafine Particles Monitoring in Paris: From total number concentrations to size distributions measurements. Aerosol Air Qual. Res. 2024, 24, 240093. [Google Scholar] [CrossRef]








| Trend for PM2.5 Per Year | Mean (corr.) | Median (corr.) | Most Probable (corr.) |
|---|---|---|---|
| Airparif PM2.5 trend, no wind speed selection | −4.8 ± 0.4% (0.96) | −4.9 ± 0.5% (0.95) | −5.1 ± 0.5% (0.95) |
| Pollutrack PM2.5 trend, no wind speed selection | −6.0 ± 1.4% (0.89) | −5.7 ± 2.0% (0.78) | −4.5 ± 1.7% (0.76) |
| Airparif PM2.5 trend, winds < 6 m·s−1 range | −4.8 ± 0.4% (0.96) | −4.8 ± 0.5% (0.96) | −4.8 ± 0.6% (0.94) |
| Pollutrack PM2.5 trend, winds < 6 m·s−1 range | −6.0 ± 1.2% (0.91) | −5.8 ± 1.8% (0.82) | −5.3 ± 2.1% (0.74) |
| Airparif PM2.5 trend, winds > 6 m·s−1 | −4.1 ± 0.4% (0.95) | −4.2 ± 0.4% (0.95) | −4.1 ± 0.4% (0.95) |
| Pollutrack PM2.5 trend, winds > 6 m·s−1 | −5.2 ± 1.8% (0.78) | −4.0 ± 1.2% (0.84) | −3.7 ± 1.0% (0.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renard, J.-B.; Surcin, J. PM2.5 Pollution Decrease in Paris, France, for the 2013–2024 Period: An Evaluation of the Local Source Contributions by Subtracting the Effect of Wind Speed. Sensors 2025, 25, 6566. https://doi.org/10.3390/s25216566
Renard J-B, Surcin J. PM2.5 Pollution Decrease in Paris, France, for the 2013–2024 Period: An Evaluation of the Local Source Contributions by Subtracting the Effect of Wind Speed. Sensors. 2025; 25(21):6566. https://doi.org/10.3390/s25216566
Chicago/Turabian StyleRenard, Jean-Baptiste, and Jérémy Surcin. 2025. "PM2.5 Pollution Decrease in Paris, France, for the 2013–2024 Period: An Evaluation of the Local Source Contributions by Subtracting the Effect of Wind Speed" Sensors 25, no. 21: 6566. https://doi.org/10.3390/s25216566
APA StyleRenard, J.-B., & Surcin, J. (2025). PM2.5 Pollution Decrease in Paris, France, for the 2013–2024 Period: An Evaluation of the Local Source Contributions by Subtracting the Effect of Wind Speed. Sensors, 25(21), 6566. https://doi.org/10.3390/s25216566
