All-Metal Metamaterial-Based Sensor with Novel Geometry and Enhanced Sensing Capability at Terahertz Frequency
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MMA | Metamaterial Absorber |
RIU | Refractive Index Unit |
FWHM | Full Width Half Maximum |
FoM | Figure of Merit |
Q-factor | Quality Factor |
m-MIMO | massive multiple-input multiple-output |
References
- Ramakrishna, S.A.; Grzegorczyk, T.M. Physics and Applications of Negative Refractive Index Materials; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Banerjee, S.; Dutta, P.; Jha, A.V.; Appasani, B.; Khan, M.S. A Biomedical Sensor for Detection of Cancer Cells Based on Terahertz Metamaterial Absorber. IEEE Sensors Lett. 2022, 6, 6002004. [Google Scholar] [CrossRef]
- Grzegorczyk, T.M.; Moss, C.D.; Lu, J.; Chen, X.; Pacheco, J.; Kong, J.A. Properties of left-handed metamaterials: Transmission, backward phase, negative refraction, and focusing. IEEE Trans. Microw. Theory Tech. 2005, 53, 2956–2967. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165–1174. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon 2020, 174, 617–624. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Y.; Cui, Z.; Zhang, X.; Zhu, Y.; Zhang, X.; Chen, S.; Wang, X.; Zhang, K. Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt. Express 2021, 29, 13563–13575. [Google Scholar] [CrossRef]
- Yan, X.; Liang, L.-J.; Ding, X.; Yao, J.-Q. Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Opt. Eng. 2017, 56, 027104. [Google Scholar] [CrossRef]
- Janneh, M.; De Marcellis, A.; Palange, E.; Tenggara, A.T.; Byun, D. Design of a metasurface-based dual-band Terahertz perfect absorber with very high Q-factors for sensing applications. Opt. Commun. 2018, 416, 152–159. [Google Scholar] [CrossRef]
- Xiong, H.; Ma, X.; Zhang, H. Wave-thermal effect of a temperature-tunable terahertz absorber. Opt. Express 2021, 29, 38557–38566. [Google Scholar] [CrossRef]
- Wu, L.; Yang, L.; Zhu, X.; Cai, B.; Cheng, Y. Ultra-broadband and wide-angle plasmonic absorber based on all-dielectric gallium arsenide pyramid nanostructure for full solar radiation spectrum range. Int. J. Therm. Sci. 2024, 201, 109043. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, C.; Li, Z.; Su, J.; Yi, Z.; Yao, W.; Wu, P.; Liu, Z.; Cheng, S.; Pan, M. Multi-band and high-sensitivity perfect absorber based on monolayer graphene metamaterial. Diam. Relat. Mater. 2020, 111, 108227. [Google Scholar] [CrossRef]
- Cai, B.; Wu, L.; Zhu, X.; Cheng, Z.; Cheng, Y. Ultra-broadband and wide-angle plasmonic light absorber based on all-dielectric gallium arsenide (GaAs) metasurface in visible and near-infrared region. Results Phys. 2024, 58, 107509. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Shi, L.; He, N.; Li, D.; Shang, Q.; Zhang, Q.; Fu, H.; Zhou, L.; Xiong, W.; et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun. 2021, 12, 6425. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, X.; Lin, Y.-S. Terahertz meta-absorber with tunable single- and dual-resonance characteristics. Phys. E Low-Dimens. Syst. Nanostructures 2022, 142, 115274. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, J. Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys. Scr. 2022, 97, 095508. [Google Scholar] [CrossRef]
- Zhang, S.; Lai, S.; Lu, L.; Yang, Z.; Wang, K.; Feng, S.; Wu, Y.; Zhu, H.; Wang, B.-X. Triple-band terahertz metamaterial absorber using the nesting structure of two pairs of splitting arcs. Mod. Phys. Lett. B 2022, 36, 2250076. [Google Scholar] [CrossRef]
- Wu, Q.; Ling, F.; Zhang, C.; Zhong, Z.; Zhang, B. Water-based metamaterials absorber with broadband absorption in terahertz region. Opt. Commun. 2022, 526, 128874. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Chen, F.; Luo, H.; Li, X. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 2021, 402, 127345. [Google Scholar] [CrossRef]
- Feng, G.; Chen, Z.; Wang, X.; Liu, X.; Sun, F.; Yang, Y. Ultra-broadband terahertz absorber based on double truncated pyramid structure. Mater. Today Commun. 2022, 31, 103624. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Lu, H.; Liu, H.; Jin, C. 3D-Printed All-Metal Terahertz Multibeam Lens Antenna Based on Photonic Crystal. IEEE Access 2023, 11, 41609–41617. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, X.; Lou, Y.; Yan, F.-G.; Zhou, Z.; Wu, W.; Yuen, C. Channel Training-Aided Target Sensing for Terahertz Integrated Sensing and Massive MIMO Communications. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Q.; Guo, L.; Su, C.; Wang, M.; Xia, F.; Sun, J.; Li, K.; Feng, H.; Yun, M. Dual-controlled tunable dual-band and ultra-broadband coherent perfect absorber in the THz range. Opt. Express 2022, 30, 30832–30844. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Xuan, W. Dual-band polarization-sensitive terahertz metamaterial absorber possessing frequency and amplitude dynamically-continuously tunable characteristics. Ferroelectrics 2022, 593, 174–180. [Google Scholar] [CrossRef]
- Zhan, Y.; Yin, H.; Wang, J.; Yao, H.; Fan, C. Tunable multiple band THz perfect absorber with InSb metamaterial for enhanced sensing application. Results Opt. 2022, 8, 100255. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, R.; Li, Z.; Zhao, Y.; Tian, J.; Zhang, W. Narrowband metamaterial absorbers based on interlaced T-shaped all-dielectric resonators for sensing application. JOSA B 2022, 39, 2863–2869. [Google Scholar] [CrossRef]
- Liu, X.; Fan, K.; Shadrivov, I.V.; Padilla, W.J. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 2017, 25, 191–201. [Google Scholar] [CrossRef]
- Li, A.; Dong, J.; Wang, J.; Cheng, Z.; Ho, J.S.; Zhang, D.; Wen, J.; Zhang, X.-L.; Chan, C.T.; Alù, A.; et al. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett. 2020, 125, 187403. [Google Scholar] [CrossRef]
- Cheng, Y.; Qian, Y.; Luo, H.; Chen, F.; Cheng, Z. Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Phys. E Low-Dimens. Syst. Nanostructures 2023, 146, 115527. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, Y.; Li, J.; Cheng, Y.; Wang, J.; Zhou, Z.-K.; Chen, L. High-resolution metalens imaging polarimetry. Nano Lett. 2023, 23, 10991–10997. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, Y.; Luo, H. Temperature tunable narrow-band terahertz metasurface absorber based on InSb micro-cylinder arrays for enhanced sensing application. IEEE Access 2020, 8, 82981–82988. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Chen, X. 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. J. Appl. Phys. 2021, 130, 034504. [Google Scholar] [CrossRef]
- Barzegar-Parizi, S.; Ebrahimi, A. Terahertz all metallic perfect absorber for refractive index sensing and glucose concentration detection. Phys. Scr. 2022, 98, 015504. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, I.; Fahad, M.B.; Mishra, S.K.; Yadav, R.; Appasani, B. Ultra Thin Highly Sensitive Metamaterial Absorber Based Refractive Index Sensor for Detecting Adulterants in Alcohol. Prog. Electromagn. Res. M 2024, 126, 81–88. [Google Scholar] [CrossRef]
- Banerjee, S.; Nath, U.; Dutta, P.; Jha, A.V.; Appasani, B.; Bizon, N. A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing. Inventions 2021, 6, 78. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, H.; Mao, X.S.; Gong, R. Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater. Lett. 2018, 219, 123–126. [Google Scholar] [CrossRef]
- Teber, A. A Dual-Band Terahertz Metamaterial Absorber Using an All-Metal Aluminum Hexagonal Metasurface Structure for Sensing of Cancerous Cells. J. Electron. Mater. 2024, 53, 2686–2701. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.; Chen, F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 2021, 229, 166300. [Google Scholar] [CrossRef]
- Yu, J.; Lang, T.; Chen, H. All-metal terahertz metamaterial absorber and refractive index sensing performance. Photonics 2021, 8, 164. [Google Scholar] [CrossRef]
- Cai, B.; Yang, L.; Wu, L.; Cheng, Y.; Li, X. Dual-narrowband terahertz metamaterial absorber based on all-metal vertical ring array for enhanced sensing application. Phys. Scr. 2024, 99, 095503. [Google Scholar] [CrossRef]
- Huang, X.; Ye, W.; Ran, J.; Zhou, Z.; Li, R.; Gao, B. Highly Sensitive Biosensor Based on Metamaterial Absorber With an All-Metal Structure. IEEE Sensors J. 2023, 23, 3573–3580. [Google Scholar] [CrossRef]
- Appasani, B. An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures. Prog. Electromagn. Res. Lett. 2021, 95, 9–16. [Google Scholar] [CrossRef]
- Wartak, M.S.; Tsakmakidis, K.L.; Hess, O. Introduction to metamaterials. Phys. Can 2011, 67, 30–34. [Google Scholar]
- Anwar, S.; Khan, S. Detection of Toxic Gases Based on Refractive Index Sensor for Gas-Sensing Applications. Plasmonics 2024. [Google Scholar] [CrossRef]
- Ajayan, J.; Sreejith, S.; Manikandan, M.; Lai, W.-C.; Saha, S. Terahertz sensors for next generation biomedical and other industrial electronics applications: A critical review. Sens. Actuators A: Phys. 2024, 369, 115169. [Google Scholar] [CrossRef]
- Citroni, R.; Mangini, F.; Frezza, F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors 2024, 24, 4471. [Google Scholar] [CrossRef]
Ref No. | Peak Absorption (%) | No. of Absorption Peaks | Resonant Frequency (THz) | FWHM (THz) | Quality Factor | Sensitivity (THz/RIU) | Fig. of Merit (FOM) | Polarization-Insensitive |
---|---|---|---|---|---|---|---|---|
[35] | 99.10 | 2 | 163.60 | 9.9750 | 16.400 | 197.49 | 12.79 | Yes |
[36] | 99.05 | 2 | 1.9760 | 0.0108 | 181.61 | 0.971 | 57.42 | Yes |
[37] | 99.85 | 4 | 297.45 | 7.3000 | 40.700 | 68.65 | 145.068 | Yes |
[38] | 99.95 | 1 | 1.5630 | 0.0430 | 36.350 | 4.04 | 93.953 | Yes |
[39] | 99.80 | 2 | 1.7230 | 0.0640 | 27.350 | 1.66 | 259.4 | Yes |
[40] | 99.99 | 1 | 1.9900 | 0.0230 | 87.000 | 0.54 | 23.5 | No |
[32] | 99.99 | 1 | 0.4978 | 0.00026 | 1920.0 | 0.32 | 1230 | Yes |
This paper | 91.52, 99.60, 99.98, 99.34, 94.85, 93.82 | 6 | 5.972, 6.272, 6.977, 7.067, 7.715, 7.934 | 0.02, 0.06, 0.02, 0.01, 0.01, 0.01 | 298.60, 104.53, 348.85, 706.70, 771.5, 793.4 | 5.6743 5.1 8.4514 7.92 7.2557 11.0357 | 283.715, 85, 422.57, 792, 725.57, 1103.57 | Yes |
Parameter Definition | Parameter Symbol | Measure (µm) |
---|---|---|
Unit cell periodicity | u | 86 |
Ground plate thickness | t | 2 |
First ring height | b | 6 |
Radius of first ring | r | 40 |
Radius of second ring | r1 | 30 |
Radius of third ring | r2 | 20 |
Radius of last ring | r3 | 10 |
Ring thickness | a | 2 |
Resonant Frequency (THz) | Peak Absorption (%) | FWHM (THz) | Quality Factor | Sensitivity (THz/RIU) | Figure of Merit (FOM) |
---|---|---|---|---|---|
5.972 | 91.52 | 0.02 | 298.60 | 5.6743 | 283.715 |
6.272 | 99.60 | 0.06 | 104.63 | 5.1 | 85 |
6.977 | 99.98 | 0.02 | 348.85 | 8.4514 | 422.57 |
7.067 | 99.34 | 0.01 | 706.7 | 7.92 | 792 |
7.715 | 94.85 | 0.01 | 771.5 | 7.2557 | 725.57 |
7.934 | 93.82 | 0.01 | 793.4 | 11.0357 | 1103.57 |
Resonant Frequency (THz) | Impedance, Z (Ω) | Permittivity ε (F/m) | Permeability µ (H/m) | Absolute Value of Impedance | Type of Metamaterial Response | Type of Resonance |
---|---|---|---|---|---|---|
5.972 | 477.357 + j218.392 | Negative | Almost zero | 524.94 | Epsilon-Negative | Plasmonic |
6.272 | 283.316 − j 89.7128 | Positive | Negative | 297.18 | Mu-Negative | Magnetic |
6.977 | 438.297 + j57.8342 | Negative | Almost zero | 442.09 | Epsilon-Negative | Plasmonic |
7.067 | 358.531 + j30.1279 | Negative | Almost zero | 359.79 | Epsilon-Negative | Plasmonic |
7.715 | 230.387 + j58.1584 | Negative | Almost zero | 237.61 | Epsilon-Negative | Plasmonic |
7.934 | 408.552 − j193.915 | Almost zero | Almost zero | 452.23 | Epsilon-Zero | Plasmonic |
Harmful Gas | Refractive Index | Harms Caused |
---|---|---|
Benzene | 1.001762 | Skin, Eye Irritation |
Chloroform | 1.001450 | Unconscious |
Chlorine | 1.000773 | Skin, Eye Irritation |
Carbon disulfide | 1.001481 | Severe skin and eye irritation |
Ether, methyl | 1.000891 | Severe skin and eye irritation |
Carbon dioxide | 1.00045 | Headache, dizziness |
Carbon monoxide | 1.0003364 | Fatigue, Headache |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Ghosh, I.; Santini, C.; Mangini, F.; Citroni, R.; Frezza, F. All-Metal Metamaterial-Based Sensor with Novel Geometry and Enhanced Sensing Capability at Terahertz Frequency. Sensors 2025, 25, 507. https://doi.org/10.3390/s25020507
Banerjee S, Ghosh I, Santini C, Mangini F, Citroni R, Frezza F. All-Metal Metamaterial-Based Sensor with Novel Geometry and Enhanced Sensing Capability at Terahertz Frequency. Sensors. 2025; 25(2):507. https://doi.org/10.3390/s25020507
Chicago/Turabian StyleBanerjee, Sagnik, Ishani Ghosh, Carlo Santini, Fabio Mangini, Rocco Citroni, and Fabrizio Frezza. 2025. "All-Metal Metamaterial-Based Sensor with Novel Geometry and Enhanced Sensing Capability at Terahertz Frequency" Sensors 25, no. 2: 507. https://doi.org/10.3390/s25020507
APA StyleBanerjee, S., Ghosh, I., Santini, C., Mangini, F., Citroni, R., & Frezza, F. (2025). All-Metal Metamaterial-Based Sensor with Novel Geometry and Enhanced Sensing Capability at Terahertz Frequency. Sensors, 25(2), 507. https://doi.org/10.3390/s25020507