Controlling AGV While Docking Based on the Fuzzy Rule Inference System
Abstract
1. Introduction
1.1. Switching to Local Navigation–Docking Procedure
1.2. Docking Procedure
- Initiation and Mode Switch: The AGV navigates to a predefined switching point (, ) using its global dead reckoning system. Upon reaching this point, the navigation mode seamlessly switches from global to local. This transition is subtle from a operational perspective but fundamental from a control standpoint, as it shifts reliance from odometry to real-time proximity sensor data for final precision maneuvering.
- Relative State Estimation: In the local navigation mode, the AGV continuously acquires distance measurements (), (), and (), from its onboard proximity sensors relative to the L-shaped assembly station. This raw data is processed and fused to estimate the vehicle’s precise relative state. This state is defined by:
- Heading Error: the angular deviation from being parallel to the station.
- Lateral Error: the displacement error perpendicular to the docking direction (e.g., distance to the left wall).
- Longitudinal Error: the remaining distance to travel along the docking axis to reach the final point (, ).
- Fuzzy Logic Control: the estimated state variables (, , ) are fuzzified and fed into the Takagi-Sugeno Fuzzy Logic Controller (FLC). The FLC, operating on its rule base (implemented as a gain-scheduling lookup table), calculates the optimal PWM signals for the left and right wheels. This closed-loop control process continuously adjusts the AGV’s trajectory until the state errors are minimized.
- Docking Completion: The procedure terminates successfully when the AGV’s calculated relative position resides within the acceptable tolerance window of the target destination (xf, yf), defined as . The AGV comes to a full stop, maintaining its position until the next command is received.
2. Fuzzy Logic Controller
- Fuzzification: Crisp input values from the distance sensors are mapped into linguistic variables (e.g., “distance” is described by terms such as “very close,” “close,” “optimal,” “far,” and “very far”) using predefined membership functions. This process converts numerical sensor readings into fuzzy sets characterized by degrees of membership between 0 and 1.
- Rule Inference: A set of IF-THEN rules uses these fuzzified inputs to make inferences about the appropriate motor response. The antecedent parts of these rules evaluate the fuzzy inputs, while the consequent parts define the output for each wheel’s PWM value.
2.1. Preliminary Assumptions
2.2. Fuzzy Input and Output Variables
- “Movement” determines the translational command, with the linguistic values {BACKWARD, STOP, FORWARD}.
- “Rotation” determines the rotational command, with the linguistic values {RIGHT, NO_TURN, LEFT}.
- State Evaluation: Fuzzify inputs to get indices.
- Gain Scheduling: Use indices to fetch gains (, , , ) from LUT.
- Control Calculation: Compute PWML and PWMR using the control law and the fetched gains.
2.3. LUT as a Gain Scheduler
- Heading Error : {NEGATIVE, OK, POSITIVE}.
- Longitudinal Error : {NEGATIVE, OK, POSITIVE} (Distance to front wall).
- Lateral Error : {NEGATIVE, OK, POSITIVE} (Distance to left wall).
- Too Close and Drifting Left (NEGATIVE, NEGATIVE): (STOP, RIGHT)
- Logic: Emergency stop to avoid collision. Turn right to correct the leftward drift and realign parallel to the left wall.
- Too Close and Parallel (OK, NEGATIVE): (BACKWARD, NO_TURN)
- Logic: Reverse straight back to reach the target distance. Since parallel, no turning is needed.
- Too Close and Drifting Right (POSITIVE, NEGATIVE): (STOP, LEFT)
- Logic: Emergency stop. Turn left to correct the rightward drift and realign.
- Target Distance and Drifting Left (NEGATIVE, OK): (FORWARD, RIGHT)
- Logic: Distance is good but not aligned. Move forward while arcing right to gradually correct heading without losing alignment.
- Target Distance and Parallel (OK, OK): (STOP, NO_TURN)
- Logic: Docking Complete. Perfectly aligned at the correct distance. Stop and hold position.
- Target Distance and Drifting Right (POSITIVE, OK): (FORWARD, LEFT)
- Logic: Mirror of the above. Move forward while arcing left to correct heading.
- Too Far and Drifting Left (NEGATIVE, POSITIVE): (FORWARD, RIGHT)
- Logic: Need to get closer. Move forward while turning right to simultaneously reduce distance and correct heading.
- Too Far and Parallel (OK, POSITIVE): (FORWARD, NO_TURN)
- Logic: Simply move straight forward to reach the target distance.
- Too Far and Drifting Right (POSITIVE, POSITIVE): (FORWARD, LEFT)
- Logic: Need to get closer. Move forward while turning left to correct the drift.
3. Implementation of the Fuzzy Controller
3.1. AGV Platform Overview
3.2. Actuator Characterization and PWM Calibration
3.3. Reference Points and Performance Metrics
3.4. Testing Setup
- SP1 = (600 mm, 2450 mm)
- SP2 = (900 mm, 2450 mm)
- SP3 = (1200 mm, 2450 mm)
- SP4 = (1500 mm, 2450 mm)
3.5. Experimental Procedure
3.6. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, D.; Mi, H.; Collins, E.G.; Wu, J. An Indoor Low-Cost and High-Accuracy Localization Approach for AGVs. IEEE Access 2020, 8, 50085–50090. [Google Scholar]
- European Commission. Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. In A Vision for the European Industry Until 2030—Final Report of the Industry 2030 High Level Industrial Roundtable; Publications Office: Luxembourg, 2019. [Google Scholar]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805. [Google Scholar] [CrossRef]
- Wan, J.; Yi, M.; Li, D.; Zhang, C.; Wang, S.; Zhou, K. Mobile Services for Customization Manufacturing Systems: An Example of Industry 4.0. IEEE Access 2016, 4, 8977–8986. [Google Scholar] [CrossRef]
- Ziebinski, A.; Mrozek, D.; Cupek, R.; Grzechca, D.; Fojcik, M.; Drewniak, M.; Kyrkjebø, E.; Lin, J.C.-W.; Øvsthus, K.; Biernacki, P. Challenges Associated with Sensors and Data Fusion for AGV-Driven Smart Manufacturing. In Proceedings of the Computational Science—ICCS 2021, Cham, Switzerland, 9 June 2021; pp. 595–608. [Google Scholar]
- Maka, A.; Cupek, R.; Wierzchanowski, M. Agent-based Modeling for Warehouse Logistics Systems. In Proceedings of the 2011 UkSim 13th International Conference on Computer Modelling and Simulation, Cambridge, UK, 30 March–1 April 2011; pp. 151–155. [Google Scholar]
- Chang, T.-H.; Hsu, C.-S.; Wang, C.; Yang, L.-K. Onboard Measurement and Warning Module for Irregular Vehicle Behavior. IEEE Trans. Intell. Transp. Syst. 2008, 9, 501–513. [Google Scholar] [CrossRef]
- Roth, H.; Schilling, K. Navigation and docking manoeuvres of mobile robots in industrial environments. In Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 1 August–4 September 1998; pp. 2458–2462. [Google Scholar]
- Realyvásquez-Vargas, A.; Arredondo-Soto, K.C.; García-Alcaraz, J.L.; Márquez-Lobato, B.Y.; Cruz-García, J. Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Robot. Comput.-Integr. Manuf. 2019, 57, 315–328. [Google Scholar] [CrossRef]
- Kyrkjebø, E. Inertial Human Motion Estimation for Physical Human-Robot Interaction Using an Interaction Velocity Update to Reduce Drift. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 163–164. [Google Scholar]
- Luo, R.C.; Liao, C.T.; Lin, S.C. Multi-sensor fusion for reduced uncertainty in autonomous mobile robot docking and recharging. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2203–2208. [Google Scholar]
- Deilamsalehy, H.; Havens, T.C. Sensor fused three-dimensional localization using IMU, camera and LiDAR. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Ziebinski, A.; Cupek, R.; Nalepa, M. Obstacle Avoidance by a Mobile Platform Using an Ultrasound Sensor. In Proceedings of the Computational Collective Intelligence (ICCCI 2017), Nicosia, Cyprus, 27–29 September 2017; pp. 238–248. [Google Scholar]
- Kim, K.-E.; Lee, C.-J.; Pae, D.-S.; Lim, M.-T. Sensor fusion for vehicle tracking with camera and radar sensor. In Proceedings of the 2017 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 18–21 October 2017. [Google Scholar]
- Hellmers, H.; Eichhorn, A.; Norrdine, A.; Blankenbach, J. Indoor localisation for wheeled platforms based on IMU and artificially generated magnetic field. In Proceedings of the 2014 Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), Corpus Christ, TX, USA, 20–21 November 2014; pp. 255–264. [Google Scholar]
- Ziebinski, A.; Bregulla, M.; Fojcik, M.; Klak, S. Monitoring and Controlling Speed for an Autonomous Mobile Platform Based on the Hall Sensor. In Proceedings of the Computational Collective Intelligence (ICCCI 2017), Nicosia, Cyprus, 27–29 September 2017; pp. 249–259. [Google Scholar]
- Liggins II, M.; Hall, D.; Llinas, J. Handbook of Multisensor Data Fusion: Theory and Practice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Błachuta, M.; Czyba, R.; Janusz, W.; Szafrański, G. Data Fusion Algorithm for the Altitude and Vertical Speed Estimation of the VTOL Platform. J. Intell. Robot. Syst. 2014, 74, 413–420. [Google Scholar] [CrossRef]
- Wang, W.; Bao, Z.; Zheng, J.; Wang, T. Research on automated guided vehicle (AGV) path tracking control based on laser simultaneous localization and mapping (SLAM). Mech. Sci. 2025, 16, 1–24. [Google Scholar] [CrossRef]
- Biernacki, P.; Ziębiński, A.; Grzechca, D. The Adaptive Calibration Method for Single-Beam Distance Sensors. In Proceedings of the Computational Collective Intelligence (ICCCI 2021), Rhodes, Greece, 29 September–1 October 2021; pp. 721–732. [Google Scholar]
- Tokarz, K.; Czekalski, P.; Sieczkowski, W. Integration of ultrasonic and inertial methods in indoor navigation system. Theor. Appl. Inform. 2014, 26, 107–117. [Google Scholar]
- Grzechca, D.; Ziębiński, A.; Paszek, K.; Hanzel, K.; Giel, A.; Czerny, M.; Becker, A. How Accurate Can UWB and Dead Reckoning Positioning Systems Be? Comparison to SLAM Using the RPLidar System. Sensors 2020, 20, 3761. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.C.W.; Cheng, E.N.M.; Lee, C.K.M.; Ho, G.T.S. A fuzzy logic approach to forecast energy consumption change in a manufacturing system. Expert Syst. Appl. 2008, 34, 1813–1824. [Google Scholar] [CrossRef]
- Lee, M.C.; Park, M.G. Artificial potential field based path planning for mobile robots using a virtual obstacle concept. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; pp. 735–740. [Google Scholar]
- Nwoba, E.G.; Chuka-Ogwude, D.; Vadiveloo, A.; Ogbonna, J.C. 6-Process Control Strategies Applied to Microalgae-Based Biofuel Production; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Fang, B.T. Trilateration and extension to Global Positioning System navigation. J. Guid. Control Dyn. 1986, 9, 715–717. [Google Scholar] [CrossRef]
- Ziebinski, A.; Cupek, R.; Piech, A. Distributed control architecture for the autonomous mobile platform. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2018 (ICCMSE 2018), Thessaloniki, Greece, 14–18 March 2018. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 28–44. [Google Scholar] [CrossRef]
- Mendel, J.M. Fuzzy Logic Systems for Engineering: A Tutorial. Proc. IEEE 1995, 83, 345–377. [Google Scholar] [CrossRef]
- Villagra, J.; Herrero-Perez, D. A Comparison of Control Techniques for Robust Docking Maneuvers of an AGV. IEEE Trans. Control. Syst. Technol. 2012, 20, 1116–1123. [Google Scholar] [CrossRef]
- Kodagoda, K.R.S.; Wijesoma, W.S.; Teoh, E.K. Fuzzy speed and steering control of an AGV. IEEE Trans. Control Syst. Technol. 2002, 10, 112–120. [Google Scholar] [CrossRef]
- Mamdani, E.H. Application of Fuzzy Algorithms for Control of Simple Dynamic Plant. Proc. Inst. Electr. Eng. 1974, 121, 1585–1588. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
Layer 1 of 3 | Is NEGATIVE | Is OK | Is POSITIVE |
---|---|---|---|
is NEGATIVE | BACKWARD, RIGHT (10, −10, −30, −30) | BACKWARD, RIGHT (15, −15, −25, −25) | BACKWARD, RIGHT (20, −20, −20, −20) |
is OK | BACKWARD, NO_TURN (0, 0, −40, −40) | BACKWARD, NO_TURN (0, 0, −35, −35) | BACKWARD, NO_TURN (0, 0, −30, −30) |
is POSITIVE | BACKWARD, LEFT (−10, 10, −30, −30) | BACKWARD, LEFT (−15, 15, −25, −25) | BACKWARD, LEFT (−20, 20, −20, −20) |
Layer 2 of 3 | Is NEGATIVE | Is OK | Is POSITIVE |
---|---|---|---|
is NEGATIVE | STOP, RIGHT (20, −20, 0, 0) | STOP, RIGHT (30, −30, 0, 0) | SLOW_FWS, RIGHT (25, −25, 10, 10) |
is OK | STOP, NO_TURN (0, 0, 0, 0) | STOP, NO_TURN (0, 0, 0, 0) | SLOW_FWD, NO_TURN (0, 0, 15, 15) |
is POSITIVE | STOP, LEFT (−20, 20, 0, 0) | STOP, LEFT (−30, 30, 0, 0) | SLOW_FWD, LEFT (−25, 25, 10, 10) |
Layer 3 of 3 | Is NEGATIVE | Is OK | Is POSITIVE |
---|---|---|---|
is NEGATIVE | FORWARD, RIGHT (15, −15, 25, 25) | FORWARD, RIGHT (10, −10, 30, 30) | FORWARD, RIGHT (25, −25, 35, 35) |
is OK | FORWARD, NO_TURN (0, 0, 20, 20) | FORWARD, NO_TURN (0, 0, 40, 40) | FORWARD, NO_TURN (0, 0, 45, 45) |
is POSITIVE | FORWARD, LEFT (−15, 15, 25, 25) | FORWARD, LEFT (−10, 10, 30, 30) | FORWARD, LEFT (−25, 25, 35, 35) |
Membership Function | Value = NEGATIVE | Value = OK | Value = POSITIVE |
---|---|---|---|
Starting Position (x0, y0) [mm, mm] | astart [deg] | Attempt | xref [mm] | yref [mm] | aend [deg] | Error xref [mm] | Error yref [mm] | Error aend [deg] |
---|---|---|---|---|---|---|---|---|
SP1 (600, 2450) | −30 | 1 | 363 | 310 | −6 | −13 | 40 | 6 |
2 | 428 | 317 | −3 | −78 | 33 | 3 | ||
3 | 396 | 342 | −11 | −46 | 8 | 11 | ||
0 | 1 | 397 | 341 | −6 | −47 | 10 | 6 | |
2 | 347 | 315 | −4 | 3 | 35 | 4 | ||
3 | 392 | 323 | −6 | −42 | 27 | 6 | ||
30 | 1 | 366 | 319 | −3 | −16 | 32 | 3 | |
2 | 348 | 315 | −2 | 2 | 35 | 2 | ||
3 | 384 | 310 | −1 | −34 | 40 | 1 | ||
SP2 (900, 2450) | −30 | 1 | 265 | 333 | −11 | 85 | 17 | 11 |
2 | 220 | 323 | −9 | 130 | 27 | 9 | ||
3 | 406 | 347 | −13 | −56 | 3 | 13 | ||
0 | 1 | 462 | 325 | −7 | −112 | 25 | 7 | |
2 | 411 | 321 | −9 | −61 | 30 | 9 | ||
3 | 395 | 336 | −8 | −45 | 15 | 8 | ||
30 | 1 | 326 | 327 | −4 | 24 | 24 | 4 | |
2 | 323 | 155 | −2 | 27 | 195 | 2 | ||
3 | 387 | 379 | −3 | −37 | −29 | 3 | ||
SP3 (1200, 2450) | −30 | 1 | 400 | 335 | −10 | −50 | 16 | 10 |
2 | 439 | 336 | −6 | −89 | 15 | 6 | ||
3 | 369 | 342 | −11 | −19 | 8 | 11 | ||
0 | 1 | 399 | 321 | −6 | −49 | 29 | 6 | |
2 | 374 | 318 | −10 | −24 | 33 | 10 | ||
3 | 402 | 322 | −5 | −52 | 28 | 5 | ||
30 | 1 | 326 | 405 | 2 | 24 | −55 | −2 | |
2 | 317 | 319 | 8 | 33 | 31 | −8 | ||
3 | 304 | 299 | −1 | 46 | 52 | 1 | ||
SP4 (1500, 2450) | −30 | 1 | 377 | 337 | −12 | −27 | 13 | 12 |
2 | 405 | 327 | −8 | −55 | 23 | 8 | ||
3 | 412 | 516 | −8 | −62 | −166 | 8 | ||
0 | 1 | 367 | 317 | −3 | −17 | 34 | 3 | |
2 | 386 | 329 | −5 | −36 | 21 | 5 | ||
3 | 407 | 325 | −4 | −57 | 26 | 4 | ||
30 | 1 | 310 | 334 | 1 | 40 | 16 | −1 | |
2 | 250 | 323 | −2 | 100 | 27 | 2 | ||
3 | 312 | 552 | 3 | 38 | −202 | −3 |
Starting Position (x0, y0) [mm, mm] | astart [deg] | Attempt | xref [mm] | yref [mm] | aend [deg] | Error xref [mm] | Error yref [mm] | Error aend [deg] |
---|---|---|---|---|---|---|---|---|
SP1 (600, 2450) | −30 | 1 | 521 | 318 | 15 | −171 | 32 | −15 |
2 | 591 | 425 | 25 | −241 | −75 | −25 | ||
3 | 584 | 331 | 18 | −234 | 19 | −18 | ||
0 | 1 | 507 | 422 | 24 | −157 | −72 | −24 | |
2 | 560 | 536 | 0 | −210 | −186 | 0 | ||
3 | 511 | 467 | 8 | −161 | −117 | −8 | ||
30 | 1 | 502 | 467 | −39 | −152 | −117 | 39 | |
2 | 453 | 496 | −63 | −103 | −146 | 63 | ||
3 | 470 | 502 | −49 | −120 | −152 | 49 | ||
SP2 (900, 2450) | −30 | 1 | 575 | 579 | 16 | −225 | −229 | −16 |
2 | 554 | 444 | 9 | −204 | −94 | −9 | ||
3 | 556 | 680 | 16 | −206 | −330 | −16 | ||
0 | 1 | 477 | 502 | 30 | −127 | −152 | −30 | |
2 | 471 | 469 | 6 | −121 | −119 | −6 | ||
3 | 468 | 434 | 11 | −118 | −84 | −11 | ||
30 | 1 | 545 | 570 | −58 | −195 | −220 | 58 | |
2 | 544 | 552 | −61 | −194 | −202 | 61 | ||
3 | 377 | 414 | −61 | −27 | −64 | 61 | ||
SP3 (1200, 2450) | −30 | 1 | 585 | 530 | 5 | −235 | −180 | −5 |
2 | 555 | 694 | 7 | −205 | −344 | −7 | ||
3 | 538 | 622 | 2 | −188 | −272 | −2 | ||
0 | 1 | 358 | 360 | −59 | −8 | −10 | 59 | |
2 | 432 | 385 | −65 | −82 | −35 | 65 | ||
3 | 428 | 467 | −69 | −78 | −117 | 69 | ||
30 | 1 | 311 | 291 | −74 | 40 | 59 | 74 | |
2 | 138 | 127 | −81 | 212 | 223 | 81 | ||
3 | 313 | 335 | −74 | 38 | 15 | 74 | ||
SP4 (1500, 2450) | −30 | 1 | 438 | 397 | −21 | −88 | −47 | 21 |
2 | 539 | 529 | −4 | −189 | −179 | 4 | ||
3 | 492 | 474 | −15 | −142 | −124 | 15 | ||
0 | 1 | 313 | 356 | −63 | 37 | −6 | 63 | |
2 | 281 | 237 | −63 | 69 | 113 | 63 | ||
3 | 384 | 408 | −62 | −34 | −58 | 62 | ||
30 | 1 | 481 | 505 | −75 | −131 | −155 | 75 | |
2 | 333 | 373 | −87 | 17 | −23 | 87 | ||
3 | 436 | 433 | −78 | −86 | −83 | 78 |
Starting Position (x0, y0) [mm, mm] | astart [deg] | Mean Error xref [mm] | Mean Error yref [mm] | Mean Error aend [deg] | Std. Deviation of Error xref [mm] | Std. Deviation of Error yref [mm] | Std. Deviation of Error aend [deg] |
---|---|---|---|---|---|---|---|
SP1 (600, 2450) | −30 | 46 | 27 | 7 | 27 | 14 | 3 |
0 | 31 | 24 | 5 | 22 | 11 | 1 | |
30 | 17 | 36 | 2 | 15 | 3 | 1 | |
SP2 (900, 2450) | −30 | 90 | 16 | 11 | 79 | 10 | 2 |
0 | 73 | 23 | 8 | 29 | 6 | 1 | |
30 | 29 | 83 | 3 | 29 | 96 | 1 | |
SP3 (1200, 2450) | −30 | 53 | 13 | 9 | 29 | 3 | 2 |
0 | 42 | 30 | 7 | 13 | 2 | 2 | |
30 | 34 | 46 | 4 | 9 | 46 | 4 | |
SP4 (1500, 2450) | −30 | 48 | 67 | 9 | 15 | 87 | 2 |
0 | 37 | 27 | 4 | 16 | 5 | 1 | |
30 | 59 | 82 | 2 | 29 | 105 | 2 |
Starting Position (x0, y0) [mm, mm] | astart [deg] | Mean Error xref | Mean Error yref | Mean Error aend | Std. Deviation of Error xref | Std. Deviation of Error yref | Std. Deviation of Error aend |
---|---|---|---|---|---|---|---|
SP1 (600, 2450) | −30 | 215 | 42 | 19 | 31 | 47 | 4 |
0 | 176 | 125 | 11 | 24 | 47 | 10 | |
30 | 125 | 138 | 50 | 20 | 15 | 10 | |
SP2 (900, 2450) | −30 | 211 | 217 | 14 | 9 | 96 | 3 |
0 | 122 | 118 | 15 | 4 | 28 | 10 | |
30 | 138 | 162 | 60 | 79 | 69 | 1 | |
SP3 (1200, 2450) | −30 | 209 | 265 | 5 | 20 | 67 | 2 |
0 | 56 | 54 | 65 | 34 | 46 | 4 | |
30 | 96 | 99 | 77 | 82 | 89 | 3 | |
SP4 (1500, 2450) | −30 | 139 | 117 | 13 | 41 | 54 | 7 |
0 | 47 | 59 | 62 | 43 | 71 | 0 | |
30 | 78 | 87 | 80 | 62 | 54 | 5 |
XREF [mm] | YREF [mm] | αend [deg] | ||||
---|---|---|---|---|---|---|
Mean value of error | 47 | 134 | 39 | 124 | 6 | 39 |
Std. Deviation of error | 52 | 102 | 59 | 114 | 4.48 | 38.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzechca, D.; Gola, Ł.; Grzebinoga, M.; Ziębiński, A.; Paszek, K.; Chruszczyk, L. Controlling AGV While Docking Based on the Fuzzy Rule Inference System. Sensors 2025, 25, 6108. https://doi.org/10.3390/s25196108
Grzechca D, Gola Ł, Grzebinoga M, Ziębiński A, Paszek K, Chruszczyk L. Controlling AGV While Docking Based on the Fuzzy Rule Inference System. Sensors. 2025; 25(19):6108. https://doi.org/10.3390/s25196108
Chicago/Turabian StyleGrzechca, Damian, Łukasz Gola, Michał Grzebinoga, Adam Ziębiński, Krzysztof Paszek, and Lukas Chruszczyk. 2025. "Controlling AGV While Docking Based on the Fuzzy Rule Inference System" Sensors 25, no. 19: 6108. https://doi.org/10.3390/s25196108
APA StyleGrzechca, D., Gola, Ł., Grzebinoga, M., Ziębiński, A., Paszek, K., & Chruszczyk, L. (2025). Controlling AGV While Docking Based on the Fuzzy Rule Inference System. Sensors, 25(19), 6108. https://doi.org/10.3390/s25196108