Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database
Abstract
Highlights
- Sleep posture patterns varied with age and sex in a large clinical cohort of over 130,000 individuals undergoing 24-h Holter ECG monitoring.
- Posture-specific heart rate variability (HRV) indices, including HR, SDRR, HF, LF, VLF, CVHR, and Hsi, showed consistent differences between left and right lateral postures across age and sex groups.
- Sleep posture is a significant and independent factor influencing autonomic nervous system activity and should be considered when interpreting HRV, particularly in clinical populations.
- Incorporating posture-specific HRV analysis may enhance the physiological relevance and clinical utility of wearable ECG-based sleep monitoring.
Abstract
1. Introduction
2. Materials and Methods
2.1. ALLSTAR Database
2.2. Data Selection
- Recording duration > 5 h between 22:00 and 08:00 in lying postures (assigned as supine, right lateral, left lateral, or prone segment by the method described in Posture Estimation section below).
- 80% of the nighttime lying data meeting criterion 1 are in sinus rhythm.
2.3. Data Analysis
2.3.1. Posture Estimation
2.3.2. Time Domain HRV Indices
2.3.3. Frequency Domain HRV Indices
2.3.4. Respiration Frequency Stability
2.3.5. Cyclic Variation in Heart Rate (CVHR)
2.3.6. Calculation of Indices for Each Posture
2.4. Statistical Analysis
3. Results
3.1. Sleep Posture Distribution and Its Variation with Age and Sex
3.2. HR and SDRR Across Sleep Postures
3.3. Frequency-Domain HRV Indices Across Sleep Postures
3.4. Hsi and CVHR Across Sleep Postures
3.5. Summary of Posture-Related Differences
3.6. Potential Confounding by Sleep Apnea Severity
4. Discussion
- (1)
- Potential biases related to arrhythmia prevalence, comorbidities, and medication use may have influenced HRV indices.
- (2)
- Sleep stages were not available, so posture-specific differences could not be disentangled from stage-specific autonomic changes (e.g., REM vs. deep sleep).
- (3)
- Sleep apnea severity was estimated using ECG-based CVHR detection, which has lower sensitivity for mild or REM-related OSA compared with polysomnography.
- (4)
- Posture classification was based on accelerometer thresholds, which may not capture oblique or transient positions. In addition, analysis of a dataset with known postures suggested that the method may slightly underestimate right lateral posture and overestimate prone posture.
- (5)
- The results are not directly applicable to pulse rate variability derived from wrist-worn photoplethysmography (PPG). PRV is not a surrogate for HRV [32], partly because of variability in pulse wave velocity, which itself may be influenced by body posture and by the position of the arm wearing the device.
- (6)
- The cohort consisted of individuals referred for clinical Holter ECG, so findings may not generalize to the healthy population.
- (7)
- Although statistically significant, many posture-related differences had small effect sizes, and their clinical relevance should be interpreted with caution.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRV | Heart rate variability |
ANS | Autonomic nervous system |
OSA | obstructive sleep apnea |
ALLSTAR | Allostatic State Mapping by Ambulatory ECG Repository |
HR | Heart rate |
VLF | Very low frequency |
LF | Low frequency |
HF | High frequency |
LF/HF | LF-to-HF ratio |
Hsi | HF spectral power concentration index |
CVHR | Cyclic variation in heart rate |
AHI | Apnea-hypopnea index |
REM | Rapid eye movement |
References
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Curr. Cardiol. Rev. 2021, 17, e160721189770. [Google Scholar] [CrossRef]
- Arakaki, X.; Arechavala, R.J.; Choy, E.H.; Bautista, J.; Bliss, B.; Molloy, C.; Wu, D.A.; Shimojo, S.; Jiang, Y.; Kleinman, M.T.; et al. The connection between heart rate variability (HRV), neurological health, and cognition: A literature review. Front. Neurosci. 2023, 17, 1055445. [Google Scholar] [CrossRef] [PubMed]
- Herzig, D.; Eser, P.; Omlin, X.; Riener, R.; Wilhelm, M.; Achermann, P. Reproducibility of Heart Rate Variability Is Parameter and Sleep Stage Dependent. Front. Physiol. 2017, 8, 1100. [Google Scholar] [CrossRef]
- Sahni, R.; Schulze, K.F.; Kashyap, S.; Ohira-Kist, K.; Myers, M.M.; Fifer, W.P. Body position, sleep states, and cardiorespiratory activity in developing low birth weight infants. Early Hum. Dev. 1999, 54, 197–206. [Google Scholar] [CrossRef]
- Ceridon, M.L.; Morris, N.R.; Olson, T.P.; Lalande, S.; Johnson, B.D. Effect of supine posture on airway blood flow and pulmonary function in stable heart failure. Respir. Physiol. Neurobiol. 2011, 178, 269–274. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Oksenberg, A.; Silverberg, D.S. The effect of body posture on sleep-related breathing disorders: Facts and therapeutic implications. Sleep. Med. Rev. 1998, 2, 139–162. [Google Scholar] [CrossRef]
- Joosten, S.A.; Edwards, B.A.; Wellman, A.; Turton, A.; Skuza, E.M.; Berger, P.J.; Hamilton, G.S. The Effect of Body Position on Physiological Factors that Contribute to Obstructive Sleep Apnea. Sleep 2015, 38, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Landry, S.A.; Beatty, C.; Thomson, L.D.J.; Wong, A.M.; Edwards, B.A.; Hamilton, G.S.; Joosten, S.A. A review of supine position related obstructive sleep apnea: Classification, epidemiology, pathogenesis and treatment. Sleep. Med. Rev. 2023, 72, 101847. [Google Scholar] [CrossRef]
- Yuda, E.; Ueda, N.; Kisohara, M.; Hayano, J. Redundancy among risk predictors derived from heart rate variability and dynamics: ALLSTAR big data analysis. Ann. Noninvasive Electrocardiol. 2020, 26, e12790. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yuda, E.; Hayano, J. Machine-learning estimation of body posture and physical activity by wearable acceleration and heartbeat sensors. Signal Image Process. Int. J. 2019, 10. [Google Scholar] [CrossRef]
- Shin, S.J.; Tapp, W.N.; Reisman, S.S.; Natelson, B.H. Assessment of autonomic regulation of heart rate variability by the method of complex demodulation. IEEE Trans. Biomed. Eng. 1989, 36, 274–283. [Google Scholar] [CrossRef]
- Hayano, J.; Ueda, N.; Kisohara, M.; Yoshida, Y.; Tanaka, H.; Yuda, E. Non-REM Sleep Marker for Wearable Monitoring: Power Concentration of Respiratory Heart Rate Fluctuation. Appl. Sci. 2020, 10, 3336. [Google Scholar] [CrossRef]
- Guilleminault, C.; Connolly, S.; Winkle, R.; Melvin, K.; Tilkian, A. Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 1984, 1, 126–131. [Google Scholar] [CrossRef]
- Hayano, J.; Yasuma, F.; Watanabe, E.; Carney, R.M.; Stein, P.K.; Blumenthal, J.A.; Arsenos, P.; Gatzoulis, K.A.; Takahashi, H.; Ishii, H.; et al. Blunted cyclic variation of heart rate predicts mortality risk in post-myocardial infarction, end-stage renal disease, and chronic heart failure patients. Europace 2017, 19, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Oksenberg, A.; Silverberg, D.S.; Arons, E.; Radwan, H. Positional vs nonpositional obstructive sleep apnea patients: Anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data. Chest 1997, 112, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.A.; O’Driscoll, D.M.; Berger, P.J.; Hamilton, G.S. Supine position related obstructive sleep apnea in adults: Pathogenesis and treatment. Sleep. Med. Rev. 2014, 18, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Hayano, J.; Ohashi, K.; Yoshida, Y.; Yuda, E.; Nakamura, T.; Kiyono, K.; Yamamoto, Y. Increase in random component of heart rate variability coinciding with developmental and degenerative stages of life. Physiol. Meas. 2018, 39, 054004. [Google Scholar] [CrossRef]
- Costa, M.D.; Davis, R.B.; Goldberger, A.L. Heart Rate Fragmentation: A New Approach to the Analysis of Cardiac Interbeat Interval Dynamics. Front. Physiol. 2017, 8, 255. [Google Scholar] [CrossRef]
- Bolter, C.P.; Wilson, S.J. Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. Am. J. Physiol. 1999, 276, R1112–R1117. [Google Scholar] [CrossRef]
- Yap, J.C.; Moore, D.M.; Cleland, J.G.; Pride, N.B. Effect of supine posture on respiratory mechanics in chronic left ventricular failure. Am. J. Respir. Crit. Care Med. 2000, 162, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Fujita, M.; Sekiguchi, H.; Okano, Y.; Nagaya, N.; Ueda, K.; Tamaki, S.; Nohara, R.; Eiho, S.; Sasayama, S. Effects of posture on cardiac autonomic nervous activity in patients with congestive heart failure. J. Am. Coll. Cardiol. 2001, 37, 1788–1793. [Google Scholar] [CrossRef]
- Kuo, C.D.; Chen, G.Y. Comparison of three recumbent positions on vagal and sympathetic modulation using spectral heart rate variability in patients with coronary artery disease. Am. J. Cardiol. 1998, 81, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Haga, M.; Bao, S.; Sato, H.; Saiki, Y.; Maruyama, R. The Cardiac Sympathetic Nerve Activity in the Elderly Is Attenuated in the Right Lateral Decubitus Position. Gerontol. Geriatr. Med. 2017, 3, 2333721417708071. [Google Scholar] [CrossRef]
- Porta, A.; Gelpi, F.; Bari, V.; Cairo, B.; De Maria, B.; Takahashi, A.C.M.; Catai, A.M.; Colombo, R. Changes of the cardiac baroreflex bandwidth during postural challenges. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2023, 324, R601–R612. [Google Scholar] [CrossRef]
- Gulli, G.; Cooper, V.L.; Claydon, V.E.; Hainsworth, R. Prolonged latency in the baroreflex mediated vascular resistance response in subjects with postural related syncope. Clin. Auton. Res. 2005, 15, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Furlan, R.; Diedrich, A.; Rimoldi, A.; Palazzolo, L.; Porta, C.; Diedrich, L.; Harris, P.A.; Sleight, P.; Biagioni, I.; Robertson, D.; et al. Effects of unilateral and bilateral carotid baroreflex stimulation on cardiac and neural sympathetic discharge oscillatory patterns. Circulation 2003, 108, 717–723. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Cartwright, R.D. Effect of sleep position on sleep apnea severity. Sleep 1984, 7, 110–114. [Google Scholar] [CrossRef]
- Mador, M.J.; Kufel, T.J.; Magalang, U.J.; Rajesh, S.K.; Watwe, V.; Grant, B.J. Prevalence of positional sleep apnea in patients undergoing polysomnography. Chest 2005, 128, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Constant, I.; Laude, D.; Murat, I.; Elghozi, J.L. Pulse rate variability is not a surrogate for heart rate variability. Clin. Sci. 1999, 97, 391–397. [Google Scholar] [CrossRef]
Cardiac Disease | Ratio, % |
---|---|
Coronary artery diseases | 4.93 |
Cardiomyopathy | 0.64 |
Valvular heart diseases | 2.36 |
Congenital heart diseases | 0.8 |
Heart failure | 4.03 |
Arrhythmias | 45.67 |
Healthy subjects (screening examination) | 10.74 |
Cardiovascular risk factors | |
Hypertension | 37.48 |
Diabetes | 10.29 |
Dyslipidemia | 20.06 |
Medications | |
Calcium antagonists | 33.68 |
Angiotensin II antagonists | 26.1 |
β blockers | 8.97 |
Diuretics | 8.46 |
Nitrates | 6.11 |
Antiarrhythmic drugs | 6.03 |
Antidiabetics | 7.69 |
Hyperlipidemic drugs | 20.92 |
No medication | 26.66 |
AGE10 | Female | Male | Total |
---|---|---|---|
0 | 302 (48.0%) | 327 (52.0%) | 629 (0.5%) |
10 | 1490 (47.0%) | 1678 (53.0%) | 3168 (2.4%) |
20 | 1667 (55.4%) | 1341 (44.6%) | 3008 (2.3%) |
30 | 3175 (56.3%) | 2463 (43.7%) | 5638 (4.3%) |
40 | 6097 (55.4%) | 4903 (44.6%) | 11,000 (8.4%) |
50 | 8024 (53.0%) | 7128 (47.0%) | 15,152 (11.6%) |
60 | 14,337 (52.9%) | 12,777 (47.1%) | 27,114 (20.7%) |
70 | 22,414 (57.3%) | 16,728 (42.7%) | 39,142 (29.9%) |
80 | 13,941 (60.2%) | 9226 (39.8%) | 23,167 (17.7%) |
90 | 1977 (69.0%) | 890 (31.0%) | 2867 (2.2%) |
Total | 73,424 (56.1%) | 57,461 (43.9%) | 130,885 (100%) |
Factor | Percent of Posture | HR | SDRR | VLF Amp | LF Amp | HF Amp | LF/HF | HF Freq | His | CVHR |
---|---|---|---|---|---|---|---|---|---|---|
AGE10 | - | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Sex | - | 0.2 | 0.3 | 0.002 | 0.09 | 0.2 | 0.0003 | 0.6 | 0.0004 | 0.07 |
Sex × AGE10 | - | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Posture | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0007 | 0.01 | <0.0001 | 0.9 | <0.0001 | 0.001 |
Posture × AGE10 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.8 | <0.0001 | <0.0001 |
Posture × sex | <0.0001 | 0.1 | 0.7 | 0.4 | 0.7 | 0.7 | 0.5 | 0.9 | 0.4 | 0.2 |
Posture × sex × AGE10 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.9 | <0.0001 | <0.0001 |
Posture | Normal-to-Slight | Moderate-to-Severe | Sum of Square | Effect of Sleep Apnea | ||
---|---|---|---|---|---|---|
Effect | Total | p | η2 | |||
Female | ||||||
Supine, % | 59.1 ± 20.0 | 59.5 ± 20.2 | 303.7 | 10,338,480.8 | 0.3 | 0.000029 |
Right lateral, % | 14.8 ± 14.5 | 13.4 ± 14.2 | 4168.9 | 5,409,296.5 | <0.0001 | 0.000771 |
Left lateral, % | 13.9 ± 12.6 | 13.5 ± 12.6 | 412.7 | 4,057,333.5 | 0.1 | 0.000102 |
Prone, % | 12.2 ± 13.0 | 13.6 ± 14.2 | 4550.2 | 4,414,880.5 | <0.0001 | 0.001031 |
Male | ||||||
Supine, % | 50.5 ± 20.6 | 51.2 ± 20.1 | 1782.8 | 11,139,694.0 | 0.03 | 0.000160 |
Right lateral, % | 21.4 ± 16.3 | 20.0 ± 15.7 | 8805.4 | 6,940,129.7 | <0.0001 | 0.001269 |
Left lateral, % | 16.3 ± 13.4 | 17.0 ± 13.6 | 2406.2 | 4,795,731.9 | 0.0003 | 0.000502 |
Prone, % | 11.8 ± 12.8 | 11.8 ± 12.5 | 6.6 | 4,285,260.9 | 0.8 | 0.000002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuda, E.; Hayano, J. Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database. Sensors 2025, 25, 5982. https://doi.org/10.3390/s25195982
Yuda E, Hayano J. Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database. Sensors. 2025; 25(19):5982. https://doi.org/10.3390/s25195982
Chicago/Turabian StyleYuda, Emi, and Junichiro Hayano. 2025. "Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database" Sensors 25, no. 19: 5982. https://doi.org/10.3390/s25195982
APA StyleYuda, E., & Hayano, J. (2025). Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database. Sensors, 25(19), 5982. https://doi.org/10.3390/s25195982