Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Sources
2.2. Participants
2.3. Experimental Setups
2.4. Data Processing and Analysis
3. Results
3.1. Correlation Analysis Between CoM and CoP
3.2. Kinematic Symmetry Index Analysis
3.3. Multiple Linear Regression of CoM Displacement and Joint Angle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A Report: The Definition and Classification of Cerebral Palsy April 2006. Dev. Med. Child Neurol. 2007, 49, 8–14. [Google Scholar] [CrossRef]
- Bickley, C.; Linton, J.; Sullivan, E.; Mitchell, K.; Slota, G.; Barnes, D. Comparison of Simultaneous Static Standing Balance Data on a Pressure Mat and Force Plate in Typical Children and in Children with Cerebral Palsy. Gait Posture 2019, 67, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Woollacott, M.H.; Shumway-Cook, A. Postural Dysfunction During Standing and Walking in Children with Cerebral Palsy: What Are the Underlying Problems and What New Therapies Might Improve Balance? Neural Plast. 2005, 12, 211–219. [Google Scholar] [CrossRef]
- Almutairi, A.; Cochrane, G.D.; Christy, J.B. Vestibular and Oculomotor Function in Children with CP: Descriptive Study. Int. J. Pediatr. Otorhinolaryngol. 2019, 119, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Rojas, V.G.; Rebolledo, G.M.; Muñoz, E.G.; Cortés, N.I.; Gaete, C.B.; Delgado, C.M. Differences in Standing Balance between Patients with Diplegic and Hemiplegic Cerebral Palsy. Neural Regen. Res. 2013, 8, 2478–2483. [Google Scholar] [CrossRef]
- Rose, J.; Wolff, D.R.; Jones, V.K.; Bloch, D.A.; Oehlert, J.W.; Gamble, J.G. Postural Balance in Children with Cerebral Palsy. Dev. Med. Child Neurol. 2002, 44, 58–63. [Google Scholar] [CrossRef]
- Pavão, S.L.; dos Santos, A.N.; Woollacott, M.H.; Rocha, N.A.C.F. Assessment of Postural Control in Children with Cerebral Palsy: A Review. Res. Dev. Disabil. 2013, 34, 1367–1375. [Google Scholar] [CrossRef]
- Donker, S.F.; Ledebt, A.; Roerdink, M.; Savelsbergh, G.J.P.; Beek, P.J. Children with Cerebral Palsy Exhibit Greater and More Regular Postural Sway than Typically Developing Children. Exp. Brain Res. 2008, 184, 363–370. [Google Scholar] [CrossRef]
- Szopa, A.; Domagalska-Szopa, M. Postural Stability in Children with Cerebral Palsy. J. Clin. Med. 2024, 13, 5263. [Google Scholar] [CrossRef]
- Chen, J.; Woollacott, M.H. Lower Extremity Kinetics for Balance Control in Children with Cerebral Palsy. J. Mot. Behav. 2007, 39, 306–316. [Google Scholar] [CrossRef]
- Näslund, A.; Sundelin, G.; Hirschfeld, H. Reach Performance and Postural Adjustments During Standing in Children with Severe Spastic Diplegia Using Dynamic Ankle-Foot Orthoses. J. Rehabil. Med. 2007, 39, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Opheim, A.; Jahnsen, R.; Olsson, E.; Stanghelle, J.K. Walking Function, Pain, and Fatigue in Adults with Cerebral Palsy: A 7-Year Follow-Up Study. Dev. Med. Child Neurol. 2009, 51, 381–388. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Sung, J.-L.; Guo, L.-Y.; Liu, C.-H.; Lee, P.; Yen, C.-W.; Liaw, L.-J. Assessing Postural Stability Using Coupling Strengths between Center of Pressure and Its Ground Reaction Force Components. Appl. Sci. 2020, 10, 8077. [Google Scholar] [CrossRef]
- Shafi, H.; Awan, W.A.; Olsen, S.; Siddiqi, F.A.; Tassadaq, N.; Rashid, U.; Niazi, I.K. Assessing Gait & Balance in Adults with Mild Balance Impairment: G&B App Reliability and Validity. Sensors 2023, 23, 9718. [Google Scholar] [CrossRef]
- Ferrari, L.; Bochicchio, G.; Bottari, A.; Scarton, A.; Lucertini, F.; Pogliaghi, S. Construct Validity of a Wearable Inertial Measurement Unit (IMU) in Measuring Postural Sway and the Effect of Visual Deprivation in Healthy Older Adults. Biosensors 2024, 14, 529. [Google Scholar] [CrossRef]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: Human Movement Dynamics from Smartphone Videos. PLoS Comput. Biol. 2023, 19, e1011462. [Google Scholar] [CrossRef]
- Horsak, B.; Eichmann, A.; Lauer-Maier, K.; Prock, K.; Dumphart, B. Concurrent Assessment of a Smartphone-Based Markerless and Marker-Based Motion Capture System in Pathological Gait. Gait Posture 2023, 106 (Suppl. 1), S79–S80. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, G.; Jin, L.; Shi, J. Association of Static Posturography with Severity of White Matter Hyperintensities. Front. Neurol. 2021, 12, 579281. [Google Scholar] [CrossRef]
- Arnold, E.M.; Ward, S.R.; Lieber, R.L.; Delp, S.L. A Model of the Lower Limb for Analysis of Human Movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.K. Body Segment Mass, Radius and Radius of Gyration Proportions of Children. J. Biomech. 1986, 19, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Gouwanda, D.; Senanayake, S.M.N.A. Periodical Gait Asymmetry Assessment Using Real-Time Wireless Gyroscopes Gait Monitoring System. J. Med. Eng. Technol. 2011, 35, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Siebers, H.L.; Alrawashdeh, W.; Betsch, M.; Migliorini, F.; Hildebrand, F.; Eschweiler, J. Comparison of Different Symmetry Indices for the Quantification of Dynamic Joint Angles. BMC Sports Sci. Med. Rehabil. 2021, 13, 130. [Google Scholar] [CrossRef]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2010; ISBN 978-1-55642-766-4. [Google Scholar]
- Goble, D.J.; Marino, G.W.; Potvin, J.R. The Influence of Horizontal Velocity on Interlimb Symmetry in Normal Walking. Hum. Mov. Sci. 2003, 22, 271–283. [Google Scholar] [CrossRef]
- Burtner, P.A.; Qualls, C.; Woollacott, M.H. Muscle Activation Characteristics of Stance Balance Control in Children with Spastic Cerebral Palsy. Gait Posture 1998, 8, 163–174. [Google Scholar] [CrossRef]
- Lidbeck, C.M.; Gutierrez-Farewik, E.M.; Broström, E.; Bartonek, Å. Postural Orientation During Standing in Children with Bilateral Cerebral Palsy. Pediatr. Phys. Ther. 2014, 26, 223–229. [Google Scholar] [CrossRef]
- Tomita, H.; Fujiwara, K.; Fukaya, Y. Body Alignment and Postural Muscle Activity at Quiet Standing and Anteroposterior Stability Limits in Children with Spastic Diplegic Cerebral Palsy. Disabil. Rehabil. 2010, 32, 1232–1241. [Google Scholar] [CrossRef]
- Wellsandt, E.; Failla, M.J.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function after Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef]
- Winter, D.A. Human Balance and Posture Control During Standing and Walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Liao, H.-F.; Hwang, A.-W. Relations of Balance Function and Gross Motor Ability for Children with Cerebral Palsy. Percept. Mot. Skills 2003, 96 Pt 2, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Wulf, G.; McNevin, N.; Shea, C.H. The Automaticity of Complex Motor Skill Learning as a Function of Attentional Focus. Q. J. Exp. Psychol. A 2001, 54, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Lowes, L.P.; Westcott, S.L.; Palisano, R.J.; Effgen, S.K.; Orlin, M.N. Muscle Force and Range of Motion as Predictors of Standing Balance in Children with Cerebral Palsy. Phys. Occup. Ther. Pediatr. 2004, 24, 57–77. [Google Scholar] [CrossRef] [PubMed]
Type of CP | Age (y) | Weight (kg) | Height (m) | Gender M/F | Surgery | GMFCS І/II/Ш |
---|---|---|---|---|---|---|
Hemiplegia (L) | 3 | 17.75 | 1 | 2/0 | OS/SDR + OS: 1/1 | 0/0/2 |
Hemiplegia (R) | 9 | 25.5 | 1.3 | 0/2 | SDR + OS: 2 | 0/1/1 |
Diplegia | 6.39 | 21.89 | 1.12 | 12/6 | SDR + OS/OS/SDR:8/5/2 OS + CPS/no surgery:2/1 | 2/9/7 |
Total | 6.32 (3.92) | 21.85 (9.31) | 1.12 (0.18) | 14/8 | SDR + OS/OS:11/6 SDR/OS + CPS: 2/2 No surgery: 1 | 2/10/10 |
Indicator | Pearson Correlation Analysis | Linear Regression Analysis | ||||
---|---|---|---|---|---|---|
R | p | (95%CI) | (95%CI) | R2 | RMSE | |
Shake Track | 0.81 | <0.01 | 8.26, (5.51, 11.01) | −5.03 (−12.49, 2.42) | 0.66 | 4.80 |
Shake Track x | 0.82 | <0.01 | 6.33, (4.30, 8.37) | −2.92 (−7.98, 2.14) | 0.68 | 3.20 |
Shake Track z | 0.74 | <0.01 | 15.53, (8.98, 22.09) | −3.74 (−9.04, 1.56) | 0.55 | 3.73 |
Shift-x | 0.39 | 0.07 | 42.83, (−3.72, 89.38) | 2.87 (−0.80, 6.54) | 0.16 | 2.44 |
Shift-z | 0.94 | <0.01 | 66.80, (55.20, 78.40) | 1.59 (1.24, 1.94) | 0.88 | 0.79 |
Speed Ave | 0.66 | <0.01 | 7.30, (3.43, 11.16) | −0.10 (−0.45, 0.26) | 0.44 | 0.22 |
Speed x | 0.66 | <0.01 | 6.05, (2.88, 9.23) | −0.08 (−0.35, 0.12) | 0.44 | 0.16 |
Speed z | 0.51 | 0.02 | 9.36 (2.02, 16.7) | 0.02 (−0.19, 0.23) | 0.26 | 0.16 |
Type | Kinematics | Right (°) | Left (°) | (%) |
---|---|---|---|---|
Diplegia | Ankle-plantarflexion | 8.16 (0.89) | 6.33 (0.87) | −2.44 (9.83) |
Knee-flexion | 17.52 (0.81) | 19.40 (1.04) | −20.79 (14.02) | |
Hip-flexion | 11.73 (0.95) | 13.92 (1.08) | −4.42 (9.36) | |
Hip-adduction | −3.27 (0.69) | −6.79 (0.83) | −0.39 (32.33) | |
Pelvis-tilt | −5.13 (0.81) | / | ||
Pelvis-list | −0.57 (0.47) | / | ||
Arm-flexion | 5.90 (2.22) | 5.73 (2.30) | 4.50 (9.92) | |
Arm-adduction | −9.04 (1.41) | −8.45 (0.94) | 13.13 (15.95) | |
Elbow-flexion | 42.58 (4.82) | 42.30 (4.41) | 1.41 (15.10) | |
Hemiplegia (Left) | Ankle-plantarflexion | 3.64 (4.10) | 4.11 (3.00) | 12.37 (16.16) |
Knee-flexion | 22.01 (5.83) | 25.72 (3.32) | −2.54 (19.29) | |
Hip-flexion | 23.33 (4.21) | 22.12 (4.92) | 2.33 (12.37) | |
Hip-adduction | −3.90 (3.30) | −11.33 (3.56) | 9.48 (28.53) | |
Pelvis-tilt | −9.85 (2.29) | / | ||
Pelvis-list | −0.62 (1.90) | / | ||
Arm-flexion | 12.81 (11.36) | 18.12 (17.60) | 0.98 (10.17) | |
Arm-adduction | −5.90 (4.07) | −8.44 (5.88) | 15.38 (14.02) | |
Elbow-flexion | 30.55 (12.01) | 27.35 (8.40) | 0.52 (12.26) | |
Hemiplegia (Right) | Ankle-plantarflexion | 2.40 (3.35) | 2.07 (1.62) | −0.79 (14.39) |
Knee-flexion | 19.10 (2.44) | 12.35 (2.73) | −3.16 (15.69) | |
Hip-flexion | 18.10 (3.15) | 13.81 (3.39) | −12.64 (9.05) | |
Hip-adduction | −6.27 (1.52) | 0.35 (1.42) | 13.65 (27.12) | |
Pelvis-tilt | −8.58 (1.87) | / | ||
Pelvis-list | 1.78 (1.05) | / | ||
Arm-flexion | −2.79 (3.63) | 5.95 (2.41) | −18.37 (13.31) | |
Arm-adduction | −20.08 (3.28) | −10.33 (3.11) | 7.02 (29.16) | |
Elbow-flexion | 75.22 (17.90) | 38.79 (10.19) | 22.11 (26.43) |
CoM Range X | CoM Range Y | CoM Range Z | |
---|---|---|---|
Hip sag-min, R/L | 0.0/−0.5 | 0.0/−0.1 | 0.0/−1.7 |
Hip sag-max, R/L | 0.9/0.0 | 0.3/0.0 | 0.6/0.0 |
Knee sag-min, R/L | 1.0/0.0 | −0.1/0.0 | −1.4/0.0 |
Knee sag-max, R/L | 0.6/1.3 | 0.3/0.1 | 0.9/1.6 |
Ankle sag-min, R/L | 0.3/0.2 | 0.9/−1.1 | 1.1/0.2 |
Ankle sag-max, R/L | 0.2/0.0 | −2.7/0.0 | −3.2/0.0 |
Shoulder sag-min, R/L | 0.0/0.5 | 0.0/−0.4 | 0.0/−0.26 |
Shoulder sag-max, R/L | 1.3/0.8 | −0.3/2.0 | −1.2/1.3 |
Shoulder cor-min, R/L | −1.0/3.6 | 2.1/−1.6 | −0.7/0.2 |
Shoulder cor-max, R/L | 0.0/1.8 | 0.0/−2.6 | 0.0/−2.4 |
Elbow sag-min, R/L | 1.1/0.0 | 1.5/−0.2 | −0.4/−0.3 |
Elbow sag-max, R/L | −1.2/1.2 | −0.3/−0.1 | 0.9/−0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wilson, N.; Sun, C.; Zhang, Y. Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy. Sensors 2025, 25, 5911. https://doi.org/10.3390/s25185911
Yan X, Wilson N, Sun C, Zhang Y. Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy. Sensors. 2025; 25(18):5911. https://doi.org/10.3390/s25185911
Chicago/Turabian StyleYan, Xiaoxia, Nichola Wilson, Chengyan Sun, and Yanxin Zhang. 2025. "Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy" Sensors 25, no. 18: 5911. https://doi.org/10.3390/s25185911
APA StyleYan, X., Wilson, N., Sun, C., & Zhang, Y. (2025). Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy. Sensors, 25(18), 5911. https://doi.org/10.3390/s25185911