Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method
Abstract
Highlights
- A novel indirect load measurement framework that integrates the influence coefficient matrix with surface strain data from wharf bollard is proposed to measure mooring cable loads at a wharf;
- An optimization process is developed for strain gauges placement using a genetic algorithm (GA) approach to improve identification accuracy.
- The mooring cable loads can be identified with only five strain gauges placed on the surface of the bollard;
- The accuracy and efficiency of the method are demonstrated through simulation and experimental studies.
Abstract
1. Introduction
2. Load Identification Method
2.1. Influence Coefficient Matrix (ICM) Method
2.2. Optimization of Strain Gauge Placement
2.2.1. Individual Code
2.2.2. Fitness Function
2.2.3. Genetic Operations
2.2.4. Termination Conditions
3. Indirect Load Measurement for Mooring Cable
3.1. Load Matrix of Mooring Cable
3.2. Full-Field Strain Response of Mooring Bollard
3.3. Strain Gauge Placement and Influence Coefficient Matrix
3.4. Simulation Verification
4. Experimental Verification
4.1. Description of the Experiment
4.2. FEA Model Updating
4.3. Experimental Results Analysis
4.4. Extended Validation Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costas, R.; Figuero, A.; Pena, E.; Sande, J.; Rosa-Santos, P. Integrated approach to assess resonance between basin eigenmodes and moored ship motions with wavelet transform analysis and proposal of operational thresholds. Ocean Eng. 2022, 247, 110678. [Google Scholar] [CrossRef]
- Rosa-Santos, P.; Taveira-Pinto, F.; Veloso-Gomes, F. Experimental evaluation of the tension mooring effect on the response of moored ships. Coast. Eng. 2014, 85, 60–71. [Google Scholar] [CrossRef]
- Xie, J. Analysis of ship cable breakage accident at J terminal of Rosario port. Tianjin Navig. 2019, 3, 9–12. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, X.; Ma, Y.; Perlin, M.; Dong, G. Numerical investigation of seismic-induced harbor oscillations. Coast. Eng. 2021, 165, 103838. [Google Scholar] [CrossRef]
- Xu, G.; Gan, J.; Gao, Z.; Wu, W. Research on identification method of longitudinal bending moment of ship hull beams based on shape function. Shipbuild. China 2024, 65, 77–88. [Google Scholar] [CrossRef]
- Nam, H.; Nghia, N.T. Estimation of cable tension using measured natural frequencies. Procedia Eng. 2011, 14, 1510–1517. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Li, Y.; Zhou, P. Monitoring and early warning system for mooring rope load of sloping dock boats. In Proceedings of the 16th China Marine (Coastal) Engineering Academic Symposium, Dalian, China, 4 August 2013; pp. 1033–1037. [Google Scholar]
- Chen, C.; Wu, W.; Chen, S.; Lai, G. A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions. Eng. Struct. 2018, 166, 152–166. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Sun, Y.; Wang, F.; Li, Z. Multifrequency-based tension intelligent identification for cables with unknown end-restraints using a metaheuristic algorithm. Structures 2023, 50, 775–790. [Google Scholar] [CrossRef]
- Guo, L.; Liu, H.; Chen, Z.; Wang, L.; Ma, H. Tension identification method of structural cable based on calibration principle in engineering. Structures 2022, 46, 492–502. [Google Scholar] [CrossRef]
- Pacitti, A.; Peigney, M.; Bourquin, F.; Lacarbonara, W. Cable tension identification via nonlinear static inverse problem. Struct. Health Monit. 2020, 20, 546–566. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, Y.; Bai, X.; Chen, L.; Zhang, H. Measurement method for ship’s mooring load based on bollard surface stress. J. Shanghai Marit. Univ. 2013, 34, 1–4. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Ma, Z.; Jiao, G.; Jiang, X.; Ni, Y.; Wang, Y.; Du, Y.; Qu, G.; Huang, J. Towards long-transmission-distance and semi-active wireless strain sensing enabled by dual-interrogation-mode RFID technology. Struct. Control Health Monit. 2022, 29, e3069. [Google Scholar] [CrossRef]
- Ran, S.; Wang, Q.; Wang, J.; Ni, Y.; Guo, Z.; Luo, Y. A Concise State-of-the-Art Review of Crack Monitoring Enabled by RFID Technology. Appl. Sci. 2024, 14, 3213. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Q.; Jiao, G.; Dang, P.; Nie, G.; Liu, Z.; Sun, J. Review of Wireless RFID Strain Sensing Technology in Structural Health Monitoring. Sensors 2023, 23, 6925. [Google Scholar] [CrossRef]
- Sakakibara, S.; Kubo, M. Ship berthing and mooring monitoring system by pneumatic-type fenders. Ocean Eng. 2007, 34, 1174–1181. [Google Scholar] [CrossRef]
- Wu, J.; Shi, P.; Zhou, S.; Shu, Y.; Cao, S. Safety assessment method for bollard structure based on standard mooring force inversion. Port. Waterw. Eng 2019, 12, 60–64. [Google Scholar] [CrossRef]
- Wu, J.; Shu, Y.; Zhou, S.; Bai, L.; Cao, S. Structure monitoring method and experiment of large-scale wharf bollards. Opt. Precis. Eng. 2021, 29, 1631–1639. [Google Scholar] [CrossRef]
- Wu, L.; Xiang, Z.; Shu, D.; Liu, M.; Yang, J.; Li, M. Dynamic inversion model of the mooring force on a floating bollard of a sea lock. J. Mar. Sci. Eng. 2023, 11, 1374. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Wu, L.; Li, M.; Yang, J. Safety monitoring method for mooring lines of floating bollards in ship lock. Port. Waterw. Eng. 2023, 3, 85–91. [Google Scholar] [CrossRef]
- Liu, M.; Li, M.; Wu, L.; Jiang, T.; Zhao, D. Mechanical Model of Load-Bearing Response of Floating Bollard of Ship Lock. J. Chongqing Jiaotong Univ. Nat. Sci. 2022, 41, 127–132. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Ma, Z.; Wang, J.; Ni, Y.; Ren, W.; Wang, H. Data interpretation and forecasting of SHM heteroscedastic measurements under typhoon conditions enabled by an enhanced Hierarchical sparse Bayesian Learning model with high robustness. Measurement 2024, 230, 114509. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Ma, Z.; Ni, Y.; Liu, Z.; Jiang, J.; Sun, R.; Zhu, H.-W. Towards highaccuracy data modelling, uncertainty quantification andcorrelation analysis for SHM measurements during typhoonevents using an improved most likely heteroscedastic Gaussianprocess. Smart Struct. Syst. 2023, 32, 267–279. [Google Scholar] [CrossRef]
- Xin, S.; Yi, H.; Lei, Z.; Ziguang, J.; Qi, Z. Innovative load identification with Res-UNet: Integrating phase space reconstruction and physics-informed deep learning. Ocean Eng. 2024, 312, 119173. [Google Scholar] [CrossRef]
- Suominen, M.; Kujala, P.; Romanoff, J.; Remes, H. Influence of load length on short-term ice load statistics in full-scale. Mar. Struct. 2017, 52, 153–172. [Google Scholar] [CrossRef]
- Augustine, P.; Hunter, T.; Sievers, N.; Guo, X. Load Identification of a Suspension Assembly Using True-Load Self Transducer Generation; SAE Technical Paper; SAE: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Li, C.; Ding, X.; Ni, W.; Li, G. External load inversion technology of machine structures based on multi-information fusion of simulation and measurement. China Mech. Eng. 2022, 33, 639–646, 655. [Google Scholar] [CrossRef]
- Kujala, P. Results of long-term ice load measurements on board M/S Kemira during the winters 1985-88. In Proceedings of the 10th International Conference on Port and Ocean Engineering Under Arctic Conditions, Luleå, Sweden, 12–16 June 1989; Volume 2, p. 1118. [Google Scholar]
- Tak-Kee, L.; Jong-Hyun, L.; Heungsub, K.; Whan, R.C. Field measurement of local ice pressures on the ARAON in the Beaufort sea. Int. J. Nav. Archit. Ocean Eng. 2014, 6, 788–799. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, K.; Ji, S. Method of Monitoring and identifying ice load on ship structures and analysis of its spatial-temporal characteristics. Shipbuild. China 2023, 25, 869–878. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, X.; Kalhori, H.; Ye, L. Indirect monitoring of distributed ice loads on a steel gate in a cold region. Cold Reg. Sci. Technol. 2018, 151, 267–287. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.; Zhu, M.; Qu, X. Novel computation method of reducing ill-posedness for structural static distributed load identification by optimising strain gauge locations. Mech. Syst. Signal Process. 2019, 124, 83–110. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.; Kalhori, H.; Qu, X. Hybrid reconstruction method for indirect monitoring of an ice load of a steel gate in a cold region. Cold Reg. Sci. Technol. 2019, 162, 19–34. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.; Wei, Q.; Qu, X.; Shi, D. Indirect ice load monitoring and strength analysis of a steel gate considering uncertainties. Measurement 2019, 148, 106919. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.; Qu, X.; Shi, D. Improved C-optimal design method for ice load identification by determining sensor locations. Cold Reg. Sci. Technol. 2020, 174, 103027. [Google Scholar] [CrossRef]
- Maes, K.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.; Lombaert, G. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms. Mech. Syst. Signal Process. 2016, 76–77, 592–611. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, M.; Qu, X.; Zhu, F.; Li, Z. A monitoring method for wind loads exerted on offshore gravity wind turbine through optimised mathematical model. Ocean Eng. 2024, 309, 118606. [Google Scholar] [CrossRef]
- Ren, H.; Feng, G.; Liu, H.; Hu, X.; Zou, J. Dynamic load inversion method of ship body based on influence coefficient matrix. In Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering, Glasgow, UK, 9–14 June 2019; p. V003T02A027. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, J.; Zhang, M.; Liu, H.; Qu, X. Indirect monitoring method of wave bending moment for large semisubmersible ships. J. Harbin Eng. Univ. 2023, 44, 1666–1672. [Google Scholar] [CrossRef]
- Gao, G.; Liu, B.; Li, J.; Gan, J.; Wu, W. Identification method and experimental verification of longitudinal bending load of hull beam. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2024, 48, 67–71. Available online: https://d.wanfangdata.com.cn/periodical/whjtkjdxxb202401012 (accessed on 10 August 2025).
- Zhang, M.; Sun, L.; Xie, Y. A monitoring method of hull structural bending and torsional moment. Ocean Eng. 2024, 291, 116344. [Google Scholar] [CrossRef]
- Xu, G.; Gan, J.; Liu, H.; Wu, W. Shape function method based on truncated singular value decomposition regularization for hull longitudinal bending moment identification. Measurement 2024, 232, 114703. [Google Scholar] [CrossRef]
- Xu, G.; He, X.; Gan, J.; Wu, W. Research on simultaneous identification of ship hull bending moments and specific structural parameters Using L1 Regularization. Shipbuild. China 2025, 66, 50–63. [Google Scholar] [CrossRef]
- Kammer, D.C. Sensor placement for on-orbit modal identification and correlation of large space structures. J. Guid. Control Dyn. 1992, 14, 251–259. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y.; Xia, Q.; Zhou, X. Genetic algorithm based optimal sensor placement for L1-regularized damage detection. Struct. Control Health Monit. 2019, 26, e2274.1-14. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, J.; Wu, H.; Lee, C.; Chou, C.; Wu, L.; Yang, Y. A novel sensor placement strategy for an IoT-based power grid monitoring system. IEEE Internet Things J. 2020, 7, 7773–7782. [Google Scholar] [CrossRef]
- Peng, Z.R.; Zhao, Y.; Yin, H.; Pan, A. Artificial fish swarm algorithm based optimal sensor placement. Int. J. Control Autom. 2015, 8, 287–300. [Google Scholar] [CrossRef]
- Yi, T.; Li, H.; Gu, M.; Zhang, X. Sensor placement optimization in structural health monitoring using Niching Monkey Algorithm. Int. J. Struct. Stab. Dyn. 2014, 14, 1440012. [Google Scholar] [CrossRef]
- Zhou, G.; Yi, T.; Li, H. Sensor placement optimization in structural health monitoring using Cluster-in-Cluster Firefly Algorithm. Adv. Struct. Eng. 2014, 17, 1103–1117. [Google Scholar] [CrossRef]
- Eichner, L.; Schneider, R.; Baessler, M. Optimal vibration sensor placement for jacket support structures of offshore wind turbines based on value of information analysis. Ocean Eng. 2023, 288, 115407. [Google Scholar] [CrossRef]
- Sehgal, S.; Kumar, H. Structural dynamic model updating techniques: A state of the art review. Arch. Comput. Methods Eng. 2015, 23, 515–533. [Google Scholar] [CrossRef]
- Ereiz, S.; Duvnjak, I.; Jiménez-Alonso, J.F. Review of finite element model updating methods for structural applications. Structures 2022, 41, 684–723. [Google Scholar] [CrossRef]
- Kiran, R.P.; Das, A.; Bansal, S. A state-of-the-art review of Bayesian finite element model updating techniques for structural systems. Probabilistic Eng. Mech. 2025, 80, 103761. [Google Scholar] [CrossRef]
- Berman, A.; Nagy, E.J. Improvement of a large analytical model using test data. AIAA J. 1983, 21, 1168–1173. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Friswell, M.I. Model updating in structural dynamics: A survey. J. Sound Vib. 1993, 167, 347–375. [Google Scholar] [CrossRef]
- Alkayem, N.F.; Cao, M.; Zhang, Y.; Bayat, M.; Su, Z. Structural damage detection using finite element model updating with evolutionary algorithms: A survey. Neural Comput. Appl. 2017, 30, 389–411. [Google Scholar] [CrossRef] [PubMed]
Algorithm GA-Based Strain Gauges Location Optimization Method |
Input: |
Number of strain gauges: n (=5) |
Number of loads: m (=5) |
Population size: N (=200) |
Iterations: T (=500) |
Crossover probability: Pc (=0.7) |
Mutation probability: Pm (=0.1) |
Candidate strain sets under various unit load: (which are from FEA results.) |
Allowable orientation of strain gauges: 0–180° |
Output: |
Global optimal solution: |
Influence coefficient matrix: C |
Procedure: |
1 Population initialization using random sample, individuals are constructed as per Equation (14). |
2 while Iter < T |
3 for each individual xj |
4 1 Calculate the strain of element n at angle ψ direction under unit load Fm, as per Equation (21). |
5 2 Construct the strain matrix caused by unit loads, as per Equation (10). |
6 3 Calculate individual fitness value and select the best individual. Fitness values are calculated as per Equation (16). |
7 end for |
8 Iter = Iter + 1 |
9 end while |
10 Output global optimal solution (pi represents the element number, ψi represents the orientation of strain gauge) |
11 Calculate influence coefficient matrix C as per Equation (12). |
Case No. | φ | θ | Fa | Fr | Fx | Fy | Fz | Mx | My |
---|---|---|---|---|---|---|---|---|---|
deg | deg | kN | kN | kN | kN | kN | kN·mm | kN·mm | |
1 | 70 | 0 | 1.881 | 5.168 | 0.000 | 5.168 | 1.881 | −101.580 | 0.000 |
2 | 80 | 0 | 0.955 | 5.416 | 0.000 | 5.416 | 0.955 | −51.574 | 0.000 |
3 | 90 | 0 | 0.000 | 5.500 | 0.000 | 5.500 | 0.000 | 0.000 | 0.000 |
4 | 70 | 30 | 1.881 | 5.168 | 2.584 | 4.476 | 1.881 | −87.971 | 50.790 |
5 | 80 | 30 | 0.955 | 5.416 | 2.708 | 4.691 | 0.955 | −44.664 | 25.787 |
6 | 90 | 30 | 0.000 | 5.500 | 2.750 | 4.763 | 0.000 | 0.000 | 0.000 |
7 | 70 | 60 | 1.881 | 5.168 | 4.476 | 2.584 | 1.881 | −50.790 | 87.971 |
8 | 80 | 60 | 0.955 | 5.416 | 4.691 | 2.708 | 0.955 | −25.787 | 44.664 |
9 | 90 | 60 | 0.000 | 5.500 | 4.763 | 2.750 | 0.000 | 0.000 | 0.000 |
Strain Values (φ = 90°) | Strain Values (φ = 80°) | Strain Values (φ = 70°) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Points | Before Updating (με) | After Updating (με) | Initial Errors (%) | Corrected Errors (%) | Before Updating (με) | After Updating (με) | Initial Errors (%) | Corrected Errors (%) | Before Updating (με) | After Updating (με) | Initial Errors (%) | Corrected Errors (%) |
G1_1 | −53.1 | −51.9 | 4% | 2% | −54.9 | −53.7 | 6% | 4% | −55.1 | −53.9 | 5% | 3% |
G1_2 | −28.7 | −28.1 | 6% | 3% | −28.1 | −27.5 | 7% | 5% | −26.6 | −26.0 | 8% | 6% |
G1_3 | 3.3 | 3.2 | 9% | 6% | 7.2 | 7.0 | 9% | 7% | 10.9 | 10.6 | −6% | −8% |
G2_1 | 16.4 | 16.0 | −4% | −6% | 21.6 | 21.1 | −4% | −6% | 26.1 | 25.6 | −5% | −7% |
G2_2 | 44.8 | 43.8 | 6% | 4% | 52.8 | 51.7 | 2% | 0% | 59.3 | 58.0 | 3% | 1% |
G2_3 | 61.1 | 59.8 | 4% | 2% | 70.9 | 69.3 | 3% | 1% | 78.5 | 76.8 | 4% | 2% |
G3_1 | −116.2 | −113.5 | 4% | 1% | −117.4 | −114.7 | 4% | 2% | −115.1 | −112.4 | −3% | −5% |
G3_2 | −130.2 | −127.2 | 3% | 1% | −132.0 | −128.9 | 1% | −1% | −129.8 | −126.8 | 1% | −1% |
G3_3 | −109.3 | −106.8 | 2% | −1% | −110.3 | −107.7 | 1% | −1% | −107.9 | −105.4 | 1% | −2% |
G4_1 | 126.2 | 123.3 | 1% | −1% | 134.4 | 131.2 | 1% | −1% | 138.5 | 135.3 | 0% | −2% |
G4_2 | 126.2 | 123.3 | 5% | 2% | 134.4 | 131.2 | 3% | 0% | 138.5 | 135.3 | 2% | 0% |
G4_3 | 92.4 | 90.2 | 4% | 2% | 99.3 | 97.0 | 2% | −1% | 103.2 | 100.7 | 1% | −1% |
G5_1 | 71.4 | 69.7 | 3% | 0% | 77.7 | 75.9 | 4% | 1% | 81.6 | 79.7 | 4% | 2% |
G5_2 | 6.9 | 6.7 | 14% | 12% | 10.6 | 10.3 | 12% | 9% | 14.0 | 13.6 | 4% | 1% |
G5_3 | −59.5 | −58.1 | 6% | 4% | −58.5 | −57.1 | 5% | 2% | −55.6 | −54.3 | 5% | 2% |
f(D, t) | 3.2 | 1.6 | 2.7 | 1.3 | 2.3 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xiao, C.; Gan, L.; Jiao, B.; Pan, H.; Yuan, H. Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method. Sensors 2025, 25, 5867. https://doi.org/10.3390/s25185867
Zhou J, Xiao C, Gan L, Jiao B, Pan H, Yuan H. Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method. Sensors. 2025; 25(18):5867. https://doi.org/10.3390/s25185867
Chicago/Turabian StyleZhou, Jia, Changshi Xiao, Langxiong Gan, Bo Jiao, Haojie Pan, and Haiwen Yuan. 2025. "Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method" Sensors 25, no. 18: 5867. https://doi.org/10.3390/s25185867
APA StyleZhou, J., Xiao, C., Gan, L., Jiao, B., Pan, H., & Yuan, H. (2025). Identification of Static Loads in Wharf Mooring Cables Using the Influence Coefficient Method. Sensors, 25(18), 5867. https://doi.org/10.3390/s25185867