Toward Accurate Cybersickness Prediction in Virtual Reality: A Multimodal Physiological Modeling Approach
Abstract
Highlights
- EDA-based regression models outperformed ECG-based and multimodal models in VR cybersickness prediction, with Ensemble Learning achieving a maximum R2 of 0.98.
- SC mean, SC max, SC variance, SDNN, and HRMAD were identified as key features in physiological-signal-based VR cybersickness prediction.
- This study provides an important reference for developing accurate and interpretable cybersickness prediction models and assessment systems in VR.
- The findings offer valuable guidance for optimal selection of physiological features and sensors in cybersickness assessment systems.
Abstract
1. Introduction
2. Methodology
2.1. VR Cybersickness Experiment
2.1.1. Participants
2.1.2. Experimental Design and Task
2.1.3. Apparatus and Data Collection
2.1.4. Procedures
2.2. Machine Learning Modeling
2.2.1. Data Preprocessing and Feature Extraction
2.2.2. Regression Modeling and Evaluation
3. Results
3.1. Modeling Results
3.2. Feature Importance Across Different Modalities
4. Discussion
4.1. Evaluation of Unimodal and Bimodal Regression Models
4.2. Feature Importance and Physiological Mechanism Analysis
4.3. Implications
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Yu, F.; Shi, D.; Shi, J.; Tian, Z.; Yang, J.; Wang, X.; Jiang, Q. Application of virtual reality technology in clinical medicine. Am. J. Transl. Res. 2017, 9, 3867–3880. [Google Scholar] [PubMed]
- Bhagat, K.K.; Liou, W.-K.; Chang, C.-Y. A cost-effective interactive 3D virtual reality system applied to military live firing training. Virtual Real. 2016, 20, 127–140. [Google Scholar] [CrossRef]
- Jensen, L.; Konradsen, F. A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 2018, 23, 1515–1529. [Google Scholar] [CrossRef]
- The Business Research Company. Virtual Reality Devices Global Market Report. Available online: https://www.thebusinessresearchcompany.com/report/virtual-reality-devices-global-market-report (accessed on 7 July 2025).
- Cossio, S.; Chiappinotto, S.; Dentice, S.; Moreal, C.; Magro, G.; Dussi, G.; Palese, A.; Galazzi, A. Cybersickness and discomfort from head-mounted displays delivering fully immersive virtual reality: A systematic review. Nurse Educ. Pract. 2025, 85, 104376. [Google Scholar]
- Rebenitsch, L.; Owen, C. Review on cybersickness in applications and visual displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Garrido, L.E.; Frías-Hiciano, M.; Moreno-Jiménez, M.; Cruz, G.N.; García-Batista, Z.E.; Guerra-Peña, K.; Medrano, L.A. Focusing on cybersickness: Pervasiveness, latent trajectories, susceptibility, and effects on the virtual reality experience. Virtual Real. 2022, 26, 1347–1371. [Google Scholar] [CrossRef]
- Kourtesis, P.; Amir, R.; Linnell, J.; Argelaguet, F.; MacPherson, S.E. Cybersickness, cognition, & motor skills: The effects of music, gender, and gaming experience. IEEE Trans. Vis. Comput. Graph. 2023, 29, 2326–2336. [Google Scholar] [CrossRef]
- Souchet, A.D.; Lourdeaux, D.; Pagani, A.; Rebenitsch, L. A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: Cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload. Virtual Real. 2023, 27, 19–50. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef]
- Voinescu, A.; Petrini, K.; Stanton Fraser, D. Presence and simulator sickness predict the usability of a virtual reality attention task. Virtual Real. 2023, 27, 1967–1983. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, H.J.; Kim, E.N.; Ko, H.D.; Kim, H.T. Characteristic changes in the physiological components of cybersickness. Psychophysiology 2005, 42, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.; Park, J. Tracking motion sickness in dynamic VR environments with EDA signals. Int. J. Ind. Ergon. 2024, 99, 103543. [Google Scholar] [CrossRef]
- Garcia-Agundez, A.; Reuter, C.; Caserman, P.; Konrad, R.; Göbel, S. Identifying cybersickness through heart rate variability alterations. Int. J. Virtual Real. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Qu, C.; Che, X.; Ma, S.; Zhu, S. Bio-physiological-signals-based vr cybersickness detection. CCF Trans. Pervasive Comput. Interact. 2022, 4, 268–284. [Google Scholar] [CrossRef]
- Shimada, S.; Pannattee, P.; Ikei, Y.; Nishiuchi, N.; Yem, V. High-frequency cybersickness prediction using deep learning techniques with eye-related indices. IEEE Access 2023, 11, 95825–95839. [Google Scholar] [CrossRef]
- Sameri, J.; Coenegracht, H.; Van Damme, S.; De Turck, F.; Torres Vega, M. Physiology-driven cybersickness detection in virtual reality: A machine learning and explainable AI approach. Virtual Real. 2024, 28, 174. [Google Scholar] [CrossRef]
- Chang, E.; Billinghurst, M.; Yoo, B. Brain activity during cybersickness: A scoping review. Virtual Real. 2023, 27, 2073–2097. [Google Scholar] [CrossRef]
- Duh, H.B.-L.; Lin, J.J.; Kenyon, R.V.; Parker, D.E.; Furness, T.A. Effects of characteristics of image quality in an immersive environment. Presence Teleoperators Virtual Environ. 2002, 11, 324–332. [Google Scholar] [CrossRef]
- Adhanom, I.B.; Al-Zayer, M.; Macneilage, P.; Folmer, E. Field-of-view restriction to reduce VR sickness does not impede spatial learning in women. ACM Trans. Appl. Percept. 2021, 18, 5. [Google Scholar] [CrossRef]
- Strasburger, H.; Rentschler, I.; Jüttner, M. Peripheral vision and pattern recognition: A review. J. Vis. 2011, 11, 13. [Google Scholar] [CrossRef]
- Martirosov, S.; Bureš, M.; Zítka, T. Cyber sickness in low-immersive, semi-immersive, and fully immersive virtual reality. Virtual Real. 2022, 26, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.M.; Wood, G.; Kober, S.E. Manipulating cybersickness in virtual reality-based neurofeedback and its effects on training performance. J. Neural Eng. 2025, 22, 026014. [Google Scholar] [CrossRef] [PubMed]
- Kortemeyer, G. Virtual-Reality graph visualization based on Fruchterman-Reingold using Unity and SteamVR. Inf. Vis. 2022, 21, 143–152. [Google Scholar] [CrossRef]
- Choi, H.-I.; Lee, S.J.; Choi, J.D.; Kim, G.; Lee, Y.-S.; Lee, J.-Y. Efficacy of Wearable Single-Lead ECG Monitoring during Exercise Stress Testing: A Comparative Study. Sensors 2024, 24, 6394. [Google Scholar] [CrossRef]
- McNaboe, R.Q.; Kong, Y.; Henderson, W.A.; Cong, X.; Li, A.; Seo, M.-H.; Chen, M.-H.; Feng, B.; Posada-Quintero, H.F. Optimizing Sensor Locations for Electrodermal Activity Monitoring Using a Wearable Belt System. J. Sens. Actuator Netw. 2025, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, Q.; Zhang, T.; Wang, T.; Tao, D. Assessment of drivers’ mental workload by multimodal measures during auditory-based dual-task driving scenarios. Sensors 2024, 24, 1041. [Google Scholar] [CrossRef]
- Luo, S.; Johnston, P. A review of electrocardiogram filtering. J. Electrocardiol. 2010, 43, 486–496. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Tao, D.; Tan, H.; Wang, H.; Zhang, X.; Qu, X.; Zhang, T. A systematic review of physiological measures of mental workload. Int. J. Environ. Res. Public Health 2019, 16, 2716. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Yang, A.H.X.; Kasabov, N.; Cakmak, Y.O. Machine learning methods for the study of cybersickness: A systematic review. Brain Inform. 2022, 9, 24. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Castillo, F.; Palma, C.; Rodriguez-Fernandez, M. Emotion recognition from ECG signals using wavelet scattering and machine learning. Appl. Sci. 2021, 11, 4945. [Google Scholar] [CrossRef]
- Hadadi, A.; Guillet, C.; Chardonnet, J.-R.; Langovoy, M.; Wang, Y.; Ovtcharova, J. Prediction of cybersickness in virtual environments using topological data analysis and machine learning. Front. Virtual Real. 2022, 3, 973236. [Google Scholar] [CrossRef]
- Orozco-Mora, C.E.; Oceguera-Cuevas, D.; Fuentes-Aguilar, R.Q.; Hernández-Melgarejo, G. Stress level estimation based on physiological signals for virtual reality applications. IEEE Access 2022, 10, 68755–68767. [Google Scholar] [CrossRef]
- Yang, A.H.X.; Kasabov, N.K.; Cakmak, Y.O. Prediction and detection of virtual reality induced cybersickness: A spiking neural network approach using spatiotemporal EEG brain data and heart rate variability. Brain Inform. 2023, 10, 15. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Wang, L.; Chen, L. Multi-modal fusion emotion recognition method of speech expression based on deep learning. Front. Neurorobotics 2021, 15, 697634. [Google Scholar] [CrossRef]
- Zaidi, S.F.M.; Shafiabady, N.; Beilby, J. Identifying presence of cybersickness symptoms using AI-based predictive learning algorithms. Virtual Real. 2023, 27, 3613–3620. [Google Scholar] [CrossRef]
- Peternel, K.; Pogačnik, M.; Tavčar, R.; Kos, A. A presence-based context-aware chronic stress recognition system. Sensors 2012, 12, 15888–15906. [Google Scholar] [CrossRef]
- Stegle, O.; Fallert, S.V.; MacKay, D.J.; Brage, S. Gaussian process robust regression for noisy heart rate data. IEEE Trans. Biomed. Eng. 2008, 55, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D. Electrodermal responses: What happens in the brain. Neuroscientist 2002, 8, 132–142. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed]
- Visnovcova, Z.; Mestanik, M.; Gala, M.; Mestanikova, A.; Tonhajzerova, I. The complexity of electrodermal activity is altered in mental cognitive stressors. Comput. Biol. Med. 2016, 79, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Móra, Á.; Komka, Z.; Végh, J.; Farkas, I.; Kocsisné, G.S.; Bosnyák, E.; Szmodis, M.; Ligetvári, R.; Csöndör, É.; Almási, G. Comparison of the cardiovascular effects of extreme psychological and physical stress tests in male soccer players. Int. J. Environ. Res. Public Health 2022, 19, 715. [Google Scholar] [CrossRef]
- Kundu, R.K.; Islam, R.; Quarles, J.; Hoque, K.A. Litevr: Interpretable and lightweight cybersickness detection using explainable ai. In Proceedings of the 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; pp. 609–619. [Google Scholar]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.-P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef]
- Ramaseri-Chandra, A.N.; Reza, H. Predicting cybersickness using machine learning and demographic data in virtual reality. Electronics 2024, 13, 1313. [Google Scholar] [CrossRef]
- Qi, C.; Ding, D.; Chen, H.; Cao, Z.; Zhang, W. CPNet: Real-time cybersickness prediction without physiological sensors for cybersickness mitigation. ACM Trans. Sens. Netw. 2025. [Google Scholar] [CrossRef]
- Garcia-Agundez, A.; Reuter, C.; Becker, H.; Konrad, R.; Caserman, P.; Miede, A.; Göbel, S. Development of a classifier to determine factors causing cybersickness in virtual reality environments. Games Health J. 2019, 8, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, U.; Islam, R.; Desai, K.; Quarles, J. Investigating personalization techniques for improved cybersickness prediction in virtual reality environments. IEEE Trans. Vis. Comput. Graph. 2024, 30, 2368–2378. [Google Scholar] [CrossRef]
Extracted Features | Unit | Descriptions | Features Used for Modeling | |||
---|---|---|---|---|---|---|
ECG-Based Modeling | EDA-Based Modeling | ECG + EDA-Based Modeling | ||||
ECG | ||||||
SDNN | ms | Standard Deviation of NN Intervals (Overall heart rate variability) | √ | √ | ||
pNN20 | % | Percentage of NN20 Intervals (Indicator of short-term heart rate variability) | √ | √ | ||
CSI | -- | Cardiac Sympathetic Index (Indicator of autonomic nervous system balance) | √ | √ | ||
HRMAD | ms | Median Absolute Deviation of Heart Rate (Robust indicator of heart rate fluctuation) | √ | √ | ||
EllipseArea | ms2 | Area of Ellipse (Area of Poincaré plot ellipse, reflects overall heart rate variability) | √ | √ | ||
pNN50 | % | Percentage of NN50 Intervals (Indicator of short-term heart rate variability) | √ | √ | ||
SD2 | ms | Long-term Heart Rate Variability (Long axis of Poincaré plot ellipse, reflects long-term heart rate variability) | √ | √ | ||
HR | bpm | Heart Rate (Beats per minute; indicator of heart activity frequency) | √ | √ | ||
SDSD | ms | Standard Deviation of Successive Differences (Indicator of short-term heart rate variability) | √ | √ | ||
RMSSD | ms | Root Mean Square of Successive Differences (Indicator of parasympathetic nervous system activity) | √ | √ | ||
IBI | ms | Inter-Beat Interval (Indicator of heart rhythm) | √ | |||
BR | bps | Breathing Rate (Breaths per second; indicator of respiratory frequency) | ||||
SD1 | ms | Short-term Heart Rate Variability (Short axis of Poincaré plot ellipse, reflects instantaneous heart rate variability) | ||||
EDA | ||||||
SC mean | µS | Skin Conductance Mean (Reflects overall arousal level) | √ | √ | ||
SC var | (µS)2 | Skin Conductance Variance (Indicates spontaneous fluctuation intensity) | √ | √ | ||
SC range | µS | Skin Conductance Range (Reflects peak-to-peak amplitude) | √ | √ | ||
SCL | µS | Skin Conductance Level (Indicates baseline tonic arousal) | √ | √ | ||
SC min | µS | Skin Conductance Minimum (Minimum recorded SCL value) | √ | √ | ||
SC max | µS | Skin Conductance Maximum (Maximum recorded SCL value) | √ | √ | ||
SC std | µS | Skin Conductance Standard Deviation (Reflects fluctuation magnitude) | √ |
Modalities | Algorithm | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
ECG | Linear Regression (LR) | 0.71 | 0.78 | 0.88 | 0.33 |
Decision Tree (DT) | 0.61 | 0.69 | 0.83 | 0.41 | |
Ensemble Learning (EL) | 0.57 | 0.57 | 0.75 | 0.51 | |
Gaussian Process Regression (GPR) | 0.55 | 0.55 | 0.74 | 0.53 | |
Neural Network (NN) | 0.60 | 0.62 | 0.79 | 0.47 | |
Kernel-based Regression (KR) | 0.64 | 0.69 | 0.83 | 0.41 | |
EDA | Linear Regression (LR) | 0.82 | 0.9 | 0.95 | 0.22 |
Decision Tree (DT) | 0.03 | 0.04 | 0.19 | 0.97 | |
Ensemble Learning (EL) | 0.04 | 0.02 | 0.15 | 0.98 | |
Gaussian Process Regression (GPR) | 0.09 | 0.05 | 0.22 | 0.96 | |
Neural Network (NN) | 0.36 | 0.34 | 0.59 | 0.71 | |
Kernel-based Regression (KR) | 0.62 | 0.6 | 0.78 | 0.48 | |
ECG + EDA | Linear Regression (LR) | 0.61 | 0.59 | 0.77 | 0.5 |
Decision Tree (DT) | 0.17 | 0.22 | 0.47 | 0.81 | |
Ensemble Learning (EL) | 0.2 | 0.15 | 0.39 | 0.87 | |
Gaussian Process Regression (GPR) | 0.29 | 0.2 | 0.45 | 0.82 | |
Neural Network (NN) | 0.38 | 0.29 | 0.54 | 0.75 | |
Kernel-based Regression (KR) | 0.48 | 0.47 | 0.68 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Wang, T.; Liu, X.; Li, Y.; Tao, D. Toward Accurate Cybersickness Prediction in Virtual Reality: A Multimodal Physiological Modeling Approach. Sensors 2025, 25, 5828. https://doi.org/10.3390/s25185828
Long Y, Wang T, Liu X, Li Y, Tao D. Toward Accurate Cybersickness Prediction in Virtual Reality: A Multimodal Physiological Modeling Approach. Sensors. 2025; 25(18):5828. https://doi.org/10.3390/s25185828
Chicago/Turabian StyleLong, Yang, Tieyan Wang, Xiaoliang Liu, Yujiang Li, and Da Tao. 2025. "Toward Accurate Cybersickness Prediction in Virtual Reality: A Multimodal Physiological Modeling Approach" Sensors 25, no. 18: 5828. https://doi.org/10.3390/s25185828
APA StyleLong, Y., Wang, T., Liu, X., Li, Y., & Tao, D. (2025). Toward Accurate Cybersickness Prediction in Virtual Reality: A Multimodal Physiological Modeling Approach. Sensors, 25(18), 5828. https://doi.org/10.3390/s25185828