Interference Field Control for High-Uniformity Nanopatterning: A Review
Abstract
1. Introduction
2. Mechanism of Interference Field Formation and Optical System Configuration
2.1. Fundamental Principles of Interference Lithography
2.2. Typical System Configurations
2.3. Interference Lithography for Complex Multidimensional Periodic Structures
2.3.1. Multiple-Exposure Techniques
2.3.2. Multi-Beam Interference Lithography
2.3.3. Alternative Structure Formation Mechanisms
3. Uniformity Engineering and Structural Modulation in Interference Lithography
3.1. Wavefront Adjustment Techniques
3.1.1. Spherical Wave Interference Errors and Substrate Compensation Strategies
3.1.2. Aberration Control Strategies of Collimated Beams
3.2. Polarization Control of Interference Fields
3.3. Spatial Modulation of Interference Fields
4. Techniques for Spatiotemporal Stabilization of Interference Fringes
4.1. Sources and Types of Dynamic Drift in the Interference Field
4.2. Passive Stabilization Methods for the Interference Field
- Vibration and acoustic isolation: Employing high-performance optical tables, air-floating vibration isolation systems, and acoustic enclosures to shield the setup from ground vibrations and airborne noise;
- Temperature and humidity control: Maintaining the experimental environment within ±0.1 °C and relative humidity using air-conditioning systems and climate control units to reduce thermal expansion and refractive index fluctuations in air;
- Enclosed beam path design: Utilizing sealed optical paths to prevent air turbulence and particulate contamination, thereby enhancing system stability.
4.3. Active Locking Techniques for the Interference Fields
5. Conclusions and Outlook
5.1. Conclusions
5.2. Challenges and Future Directions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Comparison of Micro/Nano-Patterning Technologies
Technology | Resolution Limit | Throughput | Scalability | Design Flexibility |
---|---|---|---|---|
Interference Lithography (IL) | ∼20 nm () | High | Wafer-scale | Medium (periodic patterns) |
Direct Laser Interference Patterning (DLIP) | (material dependent) | Very high | m2-scale (roll-to-roll possible) | Medium (periodic, tunable) |
Laser-Induced Periodic Surface Structures (LIPSS) | to (plasmonic effect) | High (scanning-based) | Large-area with beam scanning | Low–medium (self-organized) |
Electron-Beam Lithography (EBL) | <5 nm | Low | Small-scale | High (arbitrary patterns) |
Laser Direct Writing (DLW) | ∼100 nm | Medium | Moderate | High (arbitrary patterns) |
Nanoimprint Lithography (NIL) | ∼10 nm (template dependent) | High | Wafer-scale | Medium (template dependent) |
Photolithography | <10 nm (with EUV) | Very high | Wafer-scale | High (arbitrary patterns) |
Focused Ion Beam (FIB) | ∼5 nm | Low | Small-scale | High (arbitrary patterns) |
Self-Assembly Methods | ∼10 nm (block copolymer limit) | High | Wafer-scale | Low (limited control) |
Technology | Surface Compatibility | Cost-Effectiveness | Typical Applications | |
Interference Lithography (IL) | Broad (various substrates) | High (for periodic patterns) | Photonic crystals, energy devices, sensors | |
Direct Laser Interference Patterning (DLIP) | Excellent (metals, polymers, ceramics, glass) | Very high | Tribology, wettability control, thin film functionalization | |
Laser-Induced Periodic Surface Structures (LIPSS) | Excellent (metals, dielectrics, semiconductors) | High | Biomimetic surfaces, plasmonics, wettability, anti-reflection | |
Electron-Beam Lithography (EBL) | Wide (conductive coating often needed) | Low | Mask fabrication, prototype development | |
Laser Direct Writing (DLW) | Good (polymers, resists) | Medium | Microstructure writing, rapid prototyping | |
Nanoimprint Lithography (NIL) | Good (various surfaces) | High | Mass replication, functional surfaces | |
Photolithography | Excellent (well-developed) | Medium–low (equipment cost) | Semiconductor production, microelectronics | |
Focused Ion Beam (FIB) | Limited (damage sensitive) | Low | Localized micromachining, mask repair | |
Self-Assembly Methods | Good (surface chemistry dependent) | Very high (low cost, low precision) | Low-cost templates, initial pattern formation |
References
- Dai, X.; Xie, H. New Methods of Fabricating Gratings for Deformation Measurements: A Review. Opt. Lasers Eng. 2017, 92, 48–56. [Google Scholar] [CrossRef]
- Adams, J.; Tizazu, G.; Janusz, S.; Brueck, S.R.J.; Lopez, G.P.; Leggett, G.J. Large-Area Nanopatterning of Self-Assembled Monolayers of Alkanethiolates by Interferometric Lithography. Langmuir 2010, 26, 13600–13606. [Google Scholar] [CrossRef]
- Yin, H.; Xing, K.; Zhang, Y.; Dissanayake, D.M.A.S.; Lu, Z.; Zhao, H.; Zeng, Z.; Yun, J.H.; Qi, D.C.; Yin, Z. Periodic Nanostructures: Preparation, Properties and Applications. Chem. Soc. Rev. 2021, 50, 6423–6482. [Google Scholar] [CrossRef]
- Pham, Q.T.; Dang, C.A.; Do, D.B.; Ledoux-Rak, I.; Nguyen, V.M.; Lai, N.D. Patterning of Gold Nanoparticles in Large-Area Periodic Polymer Structures by Two-Beam Interference Technique. Appl. Phys. A 2025, 131, 558. [Google Scholar] [CrossRef]
- Li, X.H.; Cai, Y.D.; Aihara, R.; Shimizu, Y.; Ito, S.; Gao, W. Fabrication of two-dimensional micro patterns for adaptive optics by using laser interference lithography. In Proceedings of the International Conference on Optical and Photonic Engineering (Icopen 2015), Singapore, 14–16 April 2015; Volume 9524. [Google Scholar] [CrossRef]
- Liu, R.; Cao, L.; Liu, D.; Lian, Z.; Wang, Z. One-Step Laser Interference Lithography for Large-Scale Preparation of a Superhydrophobic Ti6Al4V Surface with Improved Hardness, Friction Reduction and Corrosion Resistance. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 702, 134898. [Google Scholar] [CrossRef]
- Singhal, G.; Dewanjee, S.; Bae, G.; Ham, Y.; Lohan, D.J.; Lan, K.; Li, J.; Gebrael, T.; Joshi, S.N.; Jeon, S.; et al. Interference Lithography-based Fabrication of 3D Metallic Mesostructures on Reflective Substrates Using Electrodeposition-compatible Anti-reflection Coatings for Power Electronics Cooling. Adv. Electron. Mater. 2024, 10, 2300827. [Google Scholar] [CrossRef]
- Li, X.; Gao, W.; Muto, H.; Shimizu, Y.; Ito, S.; Dian, S. A Six-Degree-of-Freedom Surface Encoder for Precision Positioning of a Planar Motion Stage. Precis. Eng. 2013, 37, 771–781. [Google Scholar] [CrossRef]
- Kimura, A.; Gao, W.; Kim, W.; Hosono, K.; Shimizu, Y.; Shi, L.; Zeng, L. A Sub-Nanometric Three-Axis Surface Encoder with Short-Period Planar Gratings for Stage Motion Measurement. Precis. Eng. 2012, 36, 576–585. [Google Scholar] [CrossRef]
- Shi, Y.; Ni, K.; Li, X.; Zhou, Q.; Wang, X. Highly Accurate, Absolute Optical Encoder Using a Hybrid-Positioning Method. Opt. Lett. 2019, 44, 5258. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Xiao, X.; Zhou, Q.; Wu, G.; Lu, H.; Ni, K. Design and Testing of a Compact Optical Prism Module for Multi-Degree-of-Freedom Grating Interferometry Application. Appl. Sci. 2018, 8, 2495. [Google Scholar] [CrossRef]
- Wang, S.; Luo, L.; Gao, L.; Ma, R.; Wang, X.; Li, X. Long Binary Coding Design for Absolute Positioning Using Genetic Algorithm. In Optical Metrology and Inspection for Industrial Applications X; Ehret, G., Chen, B., Han, S., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 4. [Google Scholar] [CrossRef]
- Han, Y.; Ni, K.; Li, X.; Wu, G.; Yu, K.; Zhou, Q.; Wang, X. An FPGA Platform for Next-Generation Grating Encoders. Sensors 2020, 20, 2266. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, Q.; Li, X.; Ni, K.; Wang, X. Design and Testing of a Linear Encoder Capable of Measuring Absolute Distance. Sens. Actuators A Phys. 2020, 308, 111935. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, J.; Deng, X.; Tan, W.; Wu, Y.; Tai, R.; Cheng, X.; Li, T. Fabrication of 53.2 Nm Pitch Self-Traceable Gratings by Laser-Focused Atomic Deposition Combined with Extreme Ultraviolet Interference Lithography. Optik 2023, 279, 170735. [Google Scholar] [CrossRef]
- Chai, Y.; Li, F.; Wang, J.; Karvinen, P.; Kuittinen, M.; Kang, G. Enhanced Sensing Performance from Trapezoidal Metallic Gratings Fabricated by Laser Interference Lithography. Opt. Lett. 2022, 47, 1009–1012. [Google Scholar] [CrossRef]
- Shimizu, Y. Laser Interference Lithography for Fabrication of Planar Scale Gratings for Optical Metrology. Nanomanuf. Metrol. 2021, 4, 3–27. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Q.; Zhu, X.; Lu, H.; Yang, L.; Ma, D.; Sun, J.; Ni, K.; Wang, X. Holographic Fabrication of an Arrayed One-Axis Scale Grating for a Two-Probe Optical Linear Encoder. Opt. Express 2017, 25, 16028. [Google Scholar] [CrossRef]
- Cheng, F.; Fan, K.C. Linear Diffraction Grating Interferometer with High Alignment Tolerance and High Accuracy. Appl. Opt. 2011, 50, 4550. [Google Scholar] [CrossRef]
- Wang, W.; Wang, G.; Zhang, Y.; Sun, X.C.; Yu, Y.; Lian, Y. Light Management with Grating Structures in Optoelectronic Devices. Front. Chem. 2021, 9, 737679. [Google Scholar] [CrossRef] [PubMed]
- Jee, H.; Jeon, K.; Park, M.J.; Lee, J. Fabrication of Large Area, Ordered Nanoporous Structures on Various Substrates for Potential Electro-Optic Applications. Appl. Sci. 2021, 11, 12136. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, S.; Jiao, H.; Ji, X.; Wang, Z.; Cheng, X. Ultra-Broadband Reflector Using Double-Layer Subwavelength Gratings. Photonics Res. 2020, 8, 426–429. [Google Scholar] [CrossRef]
- Shan, S.; Liu, P.; Li, J.; Bai, J.; Wang, X.; Li, X. Fabrication of a Micro Lens Array-Grating for a Miniature Spectrometer. In Optical Design and Testing XII; Wu, R., Wang, Y., Kidger, T.E., Eds.; SPIE: Bellingham, WA, USA, 2022; p. 56. [Google Scholar] [CrossRef]
- Sarkar, S.; Aftenieva, O.; König, T.A. Advances in Scalable Plasmonic Nanostructures: Towards Phase-Engineered Interference Lithography for Complex 2D Lattices. Colloid Polym. Sci. 2024, 1–14. [Google Scholar] [CrossRef]
- Huan, S.; Sun, M.; Li, S.; Liu, Y.; Hong, Y. Interference Lithography Based on a Phase Mask for the Fabrication of Diffraction Gratings. In Proceedings of the AOPC 2023: Optical Design and Manufacturing, Beijing, China, 25–27 July 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12964, pp. 90–95. [Google Scholar] [CrossRef]
- Cao, J.; Xiong, X.; Liu, Y.; Sun, J.; Zhou, J. Surface Engineering of Lead-Free Two-Dimensional Organic-Inorganic Hybrid Perovskite by Laser Interference Lithography. Mater. Chem. Phys. 2023, 305, 127965. [Google Scholar] [CrossRef]
- Wang, G.; Xue, G.; Zhai, Q.; Zhu, J.; Yu, K.; Huang, G.; Wang, M.; Zhong, A.; Zhu, L.; Yan, S.; et al. Planar Diffractive Grating for Magneto-Optical Trap Application: Fabrication and Testing. Appl. Opt. 2021, 60, 9358. [Google Scholar] [CrossRef]
- Hwang, J.S.; Yang, M. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition. Sensors 2018, 18, 4076. [Google Scholar] [CrossRef]
- Seo, M.; Seo, J.M.; Cho, D.i.D.; Koo, K.i. Insect-Mimetic Imaging System Based on a Microlens Array Fabricated by a Patterned-Layer Integrating Soft Lithography Process. Sensors 2018, 18, 2011. [Google Scholar] [CrossRef]
- Yu, S.; Du, Q.; Mendonca, C.R.; Ranno, L.; Gu, T.; Hu, J. Two-Photon Lithography for Integrated Photonic Packaging. Light Adv. Manuf. 2024, 4, 486–502. [Google Scholar] [CrossRef]
- Nair, P.N.S.; Pan, C.; Wang, H.; Arora, D.; Wu, Q.Y.S.; Rahman, M.A.; Teng, J.; Yang, J.K.W. Fabrication of Opaque and Transparent 3D Structures Using a Single Material via Two-Photon Polymerisation Lithography. Light Adv. Manuf. 2023, 4, 243–250. [Google Scholar] [CrossRef]
- Yu, M.; Weng, Z.; Hu, J.; Wang, S.; Liu, T.; Song, Z.; Xu, H.; Wang, Z. Laser Interference Additive Manufacturing Ordered Cu Microstructure. Appl. Surf. Sci. 2023, 615, 156312. [Google Scholar] [CrossRef]
- Ma, Y.W.; Park, J.H.; Lee, S.J.; Lee, J.; Cho, S.; Shin, B.S. Fabrication System for Large-Area Seamless Nanopatterned Cylinder Mold Using the Spiral Laser Interference Exposure Method. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1–7. [Google Scholar] [CrossRef]
- Leng, B.; Zhang, Y.; Tsai, D.P.; Xiao, S. Meta-Device: Advanced Manufacturing. Light Adv. Manuf. 2024, 5, 117–132. [Google Scholar] [CrossRef]
- Chivate, A.; Zhou, C. Additive Manufacturing of Micropatterned Functional Surfaces: A Review. Int. J. Extrem. Manuf. 2024, 6, 042004. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, C.; Yan, X.; Li, T. Misalignment Measurement in Electron Beam Lithography from Multi-Scale Grid by Sampling Moiré Method. Measurement 2025, 251, 117270. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wu, H.; Chen, Y.C. Discrete Relaxation Method for Hybrid E-Beam and Triple Patterning Lithography Layout Decomposition. J. Ambient. Intell. Humaniz. Comput. 2021. [Google Scholar] [CrossRef]
- Kim, S.; Marelli, B.; Brenckle, M.A.; Mitropoulos, A.N. All-Water-Based Electron-Beam Lithography Using Silk as a Resist. Nat. Nanotechnol. 2014, 9, 306. [Google Scholar] [CrossRef]
- Steen, S.; McNab, S.J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D.M.; Topol, A.W.; Brancaccio, J.R.; et al. Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes. Microelectron. Eng. 2006, 83, 754–761. [Google Scholar] [CrossRef]
- Zhu, C.; Ekinci, H.; Pan, A.; Cui, B.; Zhu, X. Electron beam lithography on nonplanar and irregular surfaces. Microsyst. Nanoeng. 2024, 10, 52. [Google Scholar] [CrossRef]
- Ladika, D.; Butkus, A.; Melissinaki, V.; Skliutas, E.; Kabouraki, E.; Juodkazis, S.; Farsari, M.; Malinauskas, M. X-Photon 3D Lithography by Fs-Oscillators: Wavelength-Independent and Photoinitiator-Free. Light Adv. Manuf. 2025, 5, 567–579. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Pei, B.; Ge, L.; Xiong, Z.; Zhang, Z. Towards Smart Scanning Probe Lithography: A Framework Accelerating Nano-Fabrication Process with in-Situ Characterization via Machine Learning. Microsyst. Nanoeng. 2023, 9, 128. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Zhang, Y.; Bian, Y.; Wang, C.; Li, J.; Chu, J.; Hu, Y. Femtosecond Laser Direct Writing of Functional Stimulus-Responsive Structures and Applications. Int. J. Extrem. Manuf. 2023, 5, 042012. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Zhao, Y.Y.; Zheng, M.L.; Chen, S.L.; Liu, J.; Jin, F.; Dong, X.Z.; Zhao, Z.S.; Duan, X.M. Cucurbit[7]Uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. ACS Appl. Mater. Interfaces 2019, 11, 1782. [Google Scholar] [CrossRef]
- Faraone, T.; Qian, J.; Kolagatla, S.; Bradley, A.L.; Florea, L.; Delaney, C. Direct Laser Writing of Polymer Nanocomposites for Tunable Structural Color. Adv. Mater. 2025. early view. [Google Scholar] [CrossRef]
- He, Y.Z.; Li, Q.H.; Xu, G.J.; Bai, Y.Y.; Luo, Y.D.; Xu, S.T.; Ma, R.D.; Cao, H.Z. Direct Writing and Modulating of Diverse Micro/Nanostructures on Glass Substrate by Using Femtosecond Laser. Opt. Lasers Eng. 2025, 191, 109020. [Google Scholar] [CrossRef]
- Tskhe, Y.; Chiaradia, V.; Rodriguez, B.J.; Florea, L.; Delaney, C.; Murphy, R.D. Direct Laser Writing of Selectively Degradable Polypeptide Hydrogel Microstructures by Proteolytic Enzymes. ACS Appl. Mater. Interfaces 2025, 17, 37043–37052. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Kunwar, P.; Soman, P. Hydrogel-Based Diffractive Optical Elements (hDOEs) Using Rapid Digital Photopatterning. Adv. Opt. Mater. 2021, 9, 2001217. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.P.; Cooper, G.J.T.; Hinkley, T.; Gibson, G.M.; Padgett, M.J.; Cronin, L. Development of a 3D Printer Using Scanning Projection Stereolithography. Sci. Rep. 2015, 5, 9875. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, K.; Mao, J.; Ma, Y.; Wang, M.; Jia, S.; Chen, X.; Tong, Z. Laser Speckle Grayscale Lithography: A New Tool for Fabricating Highly Sensitive Flexible Capacitive Pressure Sensors. Light Adv. Manuf. 2024, 5, 229–240. [Google Scholar] [CrossRef]
- Qi, J.Y.; Zhao, Z.Y.; Liu, Z.J.; Wang, B.X.; Liu, X.Q. Integration of Cross-Scale Milli/Microlenses by Ion Beam Etching and Femtosecond Laser Modification. Opt. Lett. 2023, 48, 2752. [Google Scholar] [CrossRef]
- Buhl, J.; Yoo, D.; Köpke, M.; Gerken, M. Two-Dimensional Nanograting Fabrication by Multistep Nanoimprint Lithography and Ion Beam Etching. Nanomanufacturing 2021, 1, 39–48. [Google Scholar] [CrossRef]
- Guan, Y.; Masui, S.; Kadoya, S.; Michihata, M.; Takahashi, S. Super-Resolution by Localized Plasmonic Structured Illumination Microscopy Using Self-Assembled Nanoparticle Substrates. Nanomanuf. Metrol. 2024, 7, 14. [Google Scholar] [CrossRef]
- Jiang, B.; Miao, Z.; Zhao, Y.; Gao, C.; Li, W.; Dong, H.; Ou, C.; Li, J.; Dou, N.; Ji, T.; et al. Transferable, Polymer-Insulated Nanomesh Electrode for High-Current-Density Organic Nanowire Transistors and Gate-Tunable Light Emission. ACS Photonics 2025, 12, 3188–3197. [Google Scholar] [CrossRef]
- Chang, L.; Liu, X.; Luo, J.; Lee, C.Y.; Zhang, J.; Fan, X.; Zhang, W. Physiochemical Coupled Dynamic Nanosphere Lithography Enabling Multiple Metastructures from Single Mask. Adv. Mater. 2024, 36, 2310469. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, A.; Das, G. Combining Azimuthal and Polar Angle Resolved Shadow Mask Deposition and Nanosphere Lithography to Uncover Unique Nano-Crystals. Nanomaterials 2022, 12, 3464. [Google Scholar] [CrossRef]
- Mao, W.; Li, H.; Tang, B.; Zhang, C.; Liu, L.; Wang, P.; Dong, H.; Zhang, L. Laser Patterning of Large-Scale Perovskite Single-Crystal-Based Arrays for Single-Mode Laser Displays. Int. J. Extrem. Manuf. 2023, 5, 045001. [Google Scholar] [CrossRef]
- Meshram, T.; Yan, J. Formation of Laser-Induced Periodic Surface Structures on Reaction-Bonded Silicon Carbide by Femtosecond Pulsed Laser Irradiation. Nanomanuf. Metrol. 2023, 6, 4. [Google Scholar] [CrossRef]
- Atak, A.l.c.; Ünal, E.; Demir, H.V. Micro-3D Sculptured Metastructures with Deep Trenches for Sub-10 μm Resolution. Microsyst. Nanoeng. 2025, 11, 47. [Google Scholar] [CrossRef]
- Jian, B.; Li, H.; He, X.; Wang, R.; Yang, H.Y.; Ge, Q. Two-Photon Polymerization-Based 4D Printing and Its Applications. Int. J. Extrem. Manuf. 2023, 6, 012001. [Google Scholar] [CrossRef]
- Jiao, B.; Chen, F.; Liu, Y.; Fan, X.; Zeng, S.; Dong, Q.; Deng, L.; Gao, H.; Xiong, W. Acousto-Optic Scanning Spatial-Switching Multiphoton Lithography. Int. J. Extrem. Manuf. 2023, 5, 035008. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, C.; Sun, J.; Peng, X.; Tian, H.; Li, X.; Chen, X.; Chen, X.; Shao, J. Electric-Driven Flexible-Roller Nanoimprint Lithography on the Stress-Sensitive Warped Wafer. Int. J. Extrem. Manuf. 2023, 5, 035001. [Google Scholar] [CrossRef]
- Shimizu, Y.; Chen, L.C.; Kim, D.W.; Chen, X.; Li, X.; Matsukuma, H. An Insight on Optical Metrology in Manufacturing. Meas. Sci. Technol. 2020, 32, 042003. [Google Scholar] [CrossRef]
- Xinghui, L.; Can, C. Grating interferometric precision nanometric measurement technology. Opt. Precis. Eng. 2024, 32, 2591–2611. [Google Scholar] [CrossRef]
- Xinghui, L.; Shimizu, Y.; Ito, S.; Wei, G.; Lijiang, Z. Fabrication of diffraction gratings for surface encoders by using a Lloyds mirror interferometer with a 405 nm laser diode. In Proceedings of the Eighth International Symposium on Precision Engineering Measurement and Instrumentation, Chengdu, China, 8–11 August 2012; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2012; Volume 8759, pp. 1182–1188. [Google Scholar] [CrossRef]
- Zhu, X.W.; Li, X.H.; Zhou, Q.; Wang, X.H.; Ni, K. A blu-ray laser diode based dual-beam interference lithography for fabrication of diffraction gratings for surface encoders. Adv. Laser Process. Manuf. 2016, 10018, 2245710. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Liu, T.; Wang, G.; Wang, L.; Dong, L.; Wang, Y.; Zuo, F.; Sun, M.; Guo, J.; et al. Low-Cost Fabrication of Isooctyl Acrylate Polymer Periodic Structures by Laser Interference Photocuring. Nanomanuf. Metrol. 2025, 8, 3. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.H.; Yu, Y.H.; Sun, H.B. Laser Interference Fabrication of Large-Area Functional Periodic Structure Surface. Front. Mech. Eng. 2018, 13, 493–503. [Google Scholar] [CrossRef]
- Luo, L.; Shan, S.; Li, X. A Review: Laser Interference Lithography for Diffraction Gratings and Their Applications in Encoders and Spectrometers. Sensors 2024, 24, 6617. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Shimizu, Y.; Ito, S.; Gao, W. Fabrication of Scale Gratings for Surface Encoders by Using Laser Interference Lithography with 405 nm Laser Diodes. Int. J. Precis. Eng. Manuf. 2013, 14, 1979–1988. [Google Scholar] [CrossRef]
- Li, X.H.; Zhu, X.W.; Zhou, Q.; Wang, H.H.; Ni, K. Low-cost lithography for fabrication of one-dimensional diffraction gratings by using laser diodes. In Proceedings of the 2015 International Conference on Optical Instruments and Technology: Micro/Nano Photonics and Fabrication, Beijing, China, 17–19 May 2015; Volume 9624. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsukuma, H.; Gao, W. Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors. Sensors 2019, 19, 5289. [Google Scholar] [CrossRef]
- Shin, C.S.; Lin, T.C.; Huang, S.H. An Energy Modulation Interrogation Technique for Monitoring the Adhesive Joint Integrity Using the Full Spectral Response of Fiber Bragg Grating Sensors. Sensors 2025, 25, 36. [Google Scholar] [CrossRef]
- Matsukuma, H.; Ishizuka, R.; Furuta, M.; Li, X.; Shimizu, Y.; Gao, W. Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder. Nanomanuf. Metrol. 2019, 2, 111–123. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, J.; Yuan, W.; Zhou, Q.; Xue, G.; Wu, G.; Wang, X.; Li, X. Two-Channel Six Degrees of Freedom Grating-Encoder for Precision-Positioning of Sub-Components in Synthetic-Aperture Optics. Opt. Express 2021, 29, 21113. [Google Scholar] [CrossRef]
- Wang, S.; Ma, R.; Cao, F.; Luo, L.; Li, X. A Review: High-Precision Angle Measurement Technologies. Sensors 2024, 24, 1755. [Google Scholar] [CrossRef]
- Luo, L.; Cao, F.; Wang, S.; Li, X. Design and Demonstration of a Large Range Precision Grating Sensor for Simultaneous Measurement of Out-of-Plane Motions. Measurement 2025, 249, 116799. [Google Scholar] [CrossRef]
- Valsecchi, C.; Gomez Armas, L.E.; Weber de Menezes, J. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography. Sensors 2019, 19, 2182. [Google Scholar] [CrossRef]
- Wu, C.H.; Huang, T.C.; Ng Mou Kehn, M. Compact Waveguide Antenna Design for 77 GHz High-Resolution Radar. Sensors 2025, 25, 3262. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; He, W.; Jiang, K.; Wang, L. Optimized Fabrication of Subwavelength Slanted Gratings via Laser Interference Lithography and Faraday Cage-Assisted Etching. Microelectron. Eng. 2025, 298, 112323. [Google Scholar] [CrossRef]
- Jeon, T.; Kim, D.; Park, S. Holographic Fabrication of 3D Nanostructures. Adv. Mater. Interfaces 2018, 5, 1800330. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, G.; Wang, S.; Li, X. A Reflective-Type Heterodyne Grating Interferometer for Three-Degree-of-Freedom Subnanometer Measurement. IEEE Trans. Instrum. Meas. 2022, 71, 7007509. [Google Scholar] [CrossRef]
- Wang, S.; Liao, B.; Shi, N.; Li, X. A Compact and High-Precision Three-Degree-of-Freedom Grating Encoder Based on a Quadrangular Frustum Pyramid Prism. Sensors 2023, 23, 4022. [Google Scholar] [CrossRef]
- Poletaev, S.D.; Lyubimov, A.I. Formation of Periodic Relief Structures in Thin Chromium Films Using Laser Interference Lithography. J. Opt. Technol. 2022, 89, 359. [Google Scholar] [CrossRef]
- Matsukuma, H.; Matsunaga, M.; Zhang, K.; Shimizu, Y.; Gao, W. Fabrication of a Two-Dimensional Diffraction Grating with Isolated Photoresist Pattern Structures. Int. J. Autom. Technol. 2020, 14, 546–551. [Google Scholar] [CrossRef]
- Kim, M.; Kim, N.; Shin, J. Realization of All Two-Dimensional Bravais Lattices with Metasurface-Based Interference Lithography. Nanophotonics 2024, 13, 1467–1474. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, W.; Liu, Z.; Li, W.; Jiang, S.; Liu, L.; Jiang, Y.; Wang, W. Large-Format Grating Groove Density Measurement Method Based on Optical Interferometry. Opt. Lasers Eng. 2025, 187, 108885. [Google Scholar] [CrossRef]
- Mojarad, N.; Kazazis, D.; Ekinci, Y. Fabrication of High Aspect Ratio and Tilted Nanostructures Using Extreme Ultraviolet and Soft X-Ray Interference Lithography. J. Vac. Sci. Technol. B 2021, 39, 042601. [Google Scholar] [CrossRef]
- Meng, X.; Yu, H.; Wang, Y.; Ren, J.; Xue, C.; Yang, S.; Guo, Z.; Zhao, J.; Wu, Y.; Tai, R. Analysis of Partially Coherent Light Propagation through the Soft X-Ray Interference Lithography Beamline at SSRF. J. Synchrotron Radiat. 2021, 28, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, S.; Xue, C.; Wang, L.; Liang, Z.; Zhang, L.; Wang, Y.; Wu, Y.; Tai, R. The Recent Development of Soft X-Ray Interference Lithography in SSRF. Int. J. Extrem. Manuf. 2020, 2, 012005. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Chen, P.H.; Lin, C.H.; Liu, R.S.; Lin, B.J.; Kao, T.S.; Chiu, P.W.; Huang, T.P.; Lai, W.Y.; Wang, J.; et al. Development of EUV Interference Lithography for 25 Nm Line/Space Patterns. Micro Nano Eng. 2023, 20, 100215. [Google Scholar] [CrossRef]
- Marconi, M.C. Breakthroughs in Photonics 2012: Nano-Structuring and Nano-Fabrication Enabled by Extreme Ultraviolet Laser Sources. IEEE Photonics J. 2013, 5, 0700604. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Wang, B.; Cai, X.; Li, X.; Yu, W.; Wang, Q.; Lu, Z. Pushing Feature Size down to 11 Nm by Hyperbolic Metamaterials-Based Interference Photolithography under Illumination of UV Light Source. Appl. Phys. A 2023, 129, 87. [Google Scholar] [CrossRef]
- Jee, H.; Park, M.J.; Jeon, K.; Jeong, C.; Lee, J. Combining Interference Lithography and Two-Photon Lithography for Fabricating Large-Area Photonic Crystal Structures with Controlled Defects. Appl. Sci. 2021, 11, 6559. [Google Scholar] [CrossRef]
- Li, J.; Tan, S.H.; Li, X. Efficient Fabrication and Optimization of Large-Area Metallic Diffraction Gratings. In Proceedings of the International Conference on Advanced Imaging, Detection, and Signal Processing (AIDSP 2024), Harbin, China, 27–29 December 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13693, pp. 14–19. [Google Scholar] [CrossRef]
- Erbas, B.; Conde-Rubio, A.; Liu, X.; Pernollet, J.; Wang, Z.; Bertsch, A.; Penedo, M.; Fantner, G.; Banerjee, M.; Kis, A.; et al. Combining Thermal Scanning Probe Lithography and Dry Etching for Grayscale Nanopattern Amplification. Microsyst. Nanoeng. 2024, 10, 28. [Google Scholar] [CrossRef]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-Machine and in-Process Surface Metrology for Precision Manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Y.; Yu, C.; Chen, X.; Wang, E.; Long, S.; Zhu, H.; Gao, S.; Cao, J. Fabrication of Silver-Silicon Gratings for Surface Plasmon Excitation Using Nanosecond Laser Interference Lithography. Plasmonics 2020, 15, 1639–1644. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Hu, Z.D.; Wu, J.; Wang, J. Achieving Super Resolution Lithography Based on Bulk Plasmon Polaritons of Hyperbolic Metamaterials. Opt. Mater. 2022, 130, 112536. [Google Scholar] [CrossRef]
- Dong, J.; Liu, J.; Liu, P.; Liu, J.; Zhao, X.; Kang, G.; Xie, J.; Wang, Y. Surface Plasmon Interference Lithography with a Surface Relief Metal Grating. Opt. Commun. 2013, 288, 122–126. [Google Scholar] [CrossRef]
- Gao, W.; Ibaraki, S.; Donmez, M.A.; Kono, D.; Mayer, J.R.R.; Chen, Y.L.; Szipka, K.; Archenti, A.; Linares, J.M.; Suzuki, N. Machine Tool Calibration: Measurement, Modeling, and Compensation of Machine Tool Errors. Int. J. Mach. Tools Manuf. 2023, 187, 104017. [Google Scholar] [CrossRef]
- Xue, G.; Zhai, Q.; Lu, H.; Zhou, Q.; Ni, K.; Lin, L.; Wang, X.; Li, X. Polarized Holographic Lithography System for High-Uniformity Microscale Patterning with Periodic Tunability. Microsyst. Nanoeng. 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Lin, L.; Zhai, Q.; Zeng, C.; Wang, X.; Li, X. Development of Dielectric-Film-Based Polarization Modulation Scheme for Patterning Highly Uniform 2D Array Structures with Periodic Tunability. Opt. Lasers Eng. 2023, 167, 107627. [Google Scholar] [CrossRef]
- Shimizu, Y.; Aihara, R.; Mano, K.; Chen, C.; Chen, Y.L.; Chen, X.; Gao, W. Design and Testing of a Compact Non-Orthogonal Two-Axis Lloyd’s Mirror Interferometer for Fabrication of Large-Area Two-Dimensional Scale Gratings. Precis. Eng. 2018, 52, 138–151. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.R.; Wang, Y.; Hopkinson, M. Design and Fabrication of Photonic Crystal Structures by Single Pulse Laser Interference Lithography. Opt. Laser Technol. 2025, 181, 111951. [Google Scholar] [CrossRef]
- Mikerin, S.L.; Ugozhaev, V.D. A Two-Beam Interferometer with the Tuning of the Interference Pattern Period by Simulating Its Rotation. Precis. Eng. 2022, 78, 40–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yang, C.; Zhang, Y.; Liu, H.; Hu, W.; Gu, X. Research on Laser Interference Lithography Based on Mutual Injection Dual-Output Laser. Optik 2019, 183, 586–590. [Google Scholar] [CrossRef]
- Takahiro, N.; Shimizu, Y. A Technique for Estimating the Pitch of Interference Fringe Patterns for Pattern Exposure in a Non-Orthogonal One-Axis Lloyd’s Mirror Interferometer. Int. J. Autom. Technol. 2024, 18, 18–25. [Google Scholar] [CrossRef]
- Li, X.; Gao, W.; Shimizu, Y.; Ito, S. A Two-Axis Lloyd’s Mirror Interferometer for Fabrication of Two-Dimensional Diffraction Gratings. CIRP Ann. 2014, 63, 461–464. [Google Scholar] [CrossRef]
- Shimizu, Y.; Aihara, R.; Ren, Z.; Chen, Y.L.; Ito, S.; Gao, W. Influences of Misalignment Errors of Optical Components in an Orthogonal Two-Axis Lloyd’s Mirror Interferometer. Opt. Express 2016, 24, 27521–27535. [Google Scholar] [CrossRef]
- Zhou, H.; Zeng, L. Method to Fabricate Orthogonal Crossed Gratings Based on a Dual Lloyd’s Mirror Interferometer. Opt. Commun. 2016, 360, 68–72. [Google Scholar] [CrossRef]
- Cai, Y.D.; Li, X.H.; Aihara, R.; Zongwei, R.; Shimizu, Y.; Ito, S.; Gao, W. Investigation on the three-dimensional light intensity distribution of the fringe patterns generated by a modified two-axis Lloyd’s mirror interferometer. J. Adv. Mech. Des. Syst. Manuf. 2016, 10, JAMDSM0080. [Google Scholar] [CrossRef][Green Version]
- Bienert, F.; Röcker, C.; Graf, T.; Abdou Ahmed, M. Numerical Determination of the Substrate’s Zero-Chirp Geometry for the Elimination of the Period Chirp in Laser Interference Lithography. Opt. Express 2024, 32, 34078. [Google Scholar] [CrossRef]
- Bienert, F.; Graf, T.; Ahmed, M.A. General Mathematical Model for the Period Chirp in Interference Lithography. Opt. Express 2023, 31, 5334. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Lu, H.O.; Zhou, Q.; Wu, G.H.; Ni, K.; Wang, X.H. An Orthogonal Type Two-Axis Lloyd’s Mirror for Holographic Fabrication of Two-Dimensional Planar Scale Gratings with Large Area. Appl. Sci. 2018, 8, 2283. [Google Scholar] [CrossRef]
- Li, X.H.; Lu, H.O.; Yuan, W.H.; Zhou, Q.; Ni, K.; Wang, X.H. Holographic fabrication of two-dimensional scale gratings for surface encoder by using an orthogonal type two-axis Lloyd’s mirror interference lithography. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; Volume 11053. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, J.; Huang, W.; Wang, J.; Zhou, C. Parallel laser writing system with scanning Dammann lithography. Chin. Opt. Lett. 2014, 12, 080501. [Google Scholar] [CrossRef][Green Version]
- Huang, G.; Cui, C.; Lei, X.; Li, Q.; Yan, S.; Li, X.; Wang, G. A Review of Optical Interferometry for High-Precision Length Measurement. Micromachines 2025, 16, 6. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement Technologies for Precision Positioning. CIRP Ann. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Li, X.H.; Shimizu, Y.; Muto, H.; Ito, S.; Gao, W. Design of a Three-Axis Surface Encoder with a Blue-Ray Laser Diode. Key Eng. Mater. 2012, 523–524, 913–918. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X.; Sutherland, D.; Bochenkov, V.; Deng, S. Nanofabrication of Nanostructure Lattices: From High-Quality Large Patterns to Precise Hybrid Units. Int. J. Extrem. Manuf. 2024, 6, 062004. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Liu, M.; Wang, L.; Wang, Z.; Li, D. Biomimetic Moth-Eye Structures Fabricated by Double-Exposure Lithography Using Coplanar Three-Beam Laser Interference. Appl. Phys. B 2025, 131, 114. [Google Scholar] [CrossRef]
- Ates, S.; Karademir, E.; Balci, S.; Kocabas, C.; Aydinli, A. Large Rabi Splitting of Mixed Plasmon–Exciton States in Small Plasmonic Moiré Cavities. Opt. Lett. 2020, 45, 5824–5827. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Z.H.; Lin, X.F.; Chen, Q.D.; Xu, B.B.; Sun, H.B. Rapid Fabrication of Large-Area Periodic Structures by Multiple Exposure of Two-Beam Interference. J. Light Technol. 2013, 31, 276–281. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, X.; Di, X.; Jia, T.; Chen, T.; Zhang, L.; Yang, H.; Qi, Y.; Tang, C. Theoretical Study on Fabrication of Sub-Wavelength Structures via Combining Low-Order Guided Mode Interference Lithography with Sample Rotation. J. Opt. 2023, 25, 015001. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, J.S.; Park, J.E.; Yang, M.; Kim, S. Exploring SERS from Complex Patterns Fabricated by Multi-Exposure Laser Interference Lithography. Nanotechnology 2021, 32, 315303. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Z.; Feng, K.; Zou, S.; Li, H. Exploring SERS from Two-Dimensional Symmetric Gold Array Fabricated by Double Exposure Laser Interference Lithography. Opt. Commun. 2022, 514, 128169. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Zhang, K.; Song, Y.; Dong, B.; Wang, J.; Yan, M.; Sun, Q. Fabrication of Superhydrophobic–Hydrophilic Patterned Cu@ag Composite SERS Substrate via Femtosecond Laser. Nanomanuf. Metrol. 2024, 7, 1. [Google Scholar] [CrossRef]
- Gan, Z.; Feng, H.; Chen, L.; Min, S.; Liang, C.; Xu, M.; Jiang, Z.; Sun, Z.; Sun, C.; Cui, D.; et al. Spatial Modulation of Nanopattern Dimensions by Combining Interference Lithography and Grayscale-Patterned Secondary Exposure. Light Sci. Appl. 2022, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.D.; Liang, W.P.; Lin, J.H.; Hsu, C.C.; Lin, C.H. Fabrication of Two- and Three-Dimensional Periodic Structures by Multi-Exposure of Two-Beam Interference Technique. Opt. Express 2005, 13, 9605. [Google Scholar] [CrossRef]
- Park, J.H.; Yun, D.H.; Ma, Y.W.; Gwak, C.Y.; Shin, B.S. Prism-Based Laser Interference Lithography System for Simple Multibeam Interference Lithography. Sci. Adv. Mater. 2020, 12, 398–402. [Google Scholar] [CrossRef]
- Wang, L.; Cao, X.; Li, Q.; Chen, Q.; Sun, H. Periodic Structures Fabricated by Nanosecond Laser Four-Beam Interference Ablation. Chin. Sci. Bull. 2015, 61, 616–621. [Google Scholar] [CrossRef]
- Burrow, G.M.; Gaylord, T.K. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures. Micromachines 2011, 2, 221–257. [Google Scholar] [CrossRef]
- Jia, T.; Wang, X.; Ren, Y.; Su, Y.; Zhang, L.; Yang, H.; Qi, Y.; Liu, W. Incidence Angle Effects on the Fabrication of Microstructures Using Six-Beam Laser Interference Lithography. Coatings 2021, 11, 62. [Google Scholar] [CrossRef]
- Liu, Z.; Chai, Y.; Li, H.; Gan, X.; Zang, J.; Kang, G. Investigation of Multi-Beam Interference under Asymmetric Exposure Conditions. Opt. Commun. 2020, 459, 125080. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Yang, Y.; Chen, Z.; Zhang, Y. The Influence of Phase Difference on the Effect of Multi-Beam Interference Processing. Optik 2021, 233, 166604. [Google Scholar] [CrossRef]
- Di, X.; Yao, H.; Wang, X.; Ren, Y.; Qi, Y.; Yang, H. Theoretical Simulated Fabrication of Nanostructure by Interference of Four-Beam Guided Mode Excited by 193 Nm Laser. Phys. Scr. 2023, 98, 105502. [Google Scholar] [CrossRef]
- Wang, X.; Jia, T.; Ren, Y.; Su, Y.; Chen, Z.; Qi, Y.; Wen, X. Theoretical Investigation of Two-Dimensional Sub-Wavelength Structures Fabricated by Multi-Beam Surface Plasmon Interference Lithography. Europhys. Lett. 2021, 136, 34002. [Google Scholar] [CrossRef]
- Prielaidas, Ž.; Juodkazis, S.; Stankevičius, E. Thermal Control of SZ2080 Photopolymerization in Four-Beam Interference Lithography. Phys. Chem. Chem. Phys. 2020, 22, 5038–5045. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Du, J.; Du, J.; Wang, S.; Yan, W. Contrast Analysis of Polarization in Three-Beam Interference Lithography. Appl. Sci. 2021, 11, 4789. [Google Scholar] [CrossRef]
- Mitin, N.; Pikulin, A. Interference Surface Patterning Using Colloidal Particle Lens Arrays. Opt. Lett. 2020, 45, 6134–6137. [Google Scholar] [CrossRef]
- Shao, C.; Li, J.; Sun, J.; Li, X. Fabrication of Large-Size Gratings Based on Step-by-Step Mosaic Exposure Method. In Proceedings of the International Conference on Advanced Imaging, Detection, and Signal Processing (AIDSP 2024), Harbin, China, 27–29 December 2024; SPIE: Bellingham, WA, USA, 2025; Volume 13693, pp. 44–50. [Google Scholar] [CrossRef]
- Li, S.; Huan, S.; Ren, T.; Liu, Y.; Hong, Y.; Fu, S. Fabrication of Double-Grooved Gratings Using Coplanar Multibeam Holographic Lithography with a Phase Mask. J. Vac. Sci. Technol. B 2024, 42, 062603. [Google Scholar] [CrossRef]
- Torii, Y.; Masui, S.; Matsumoto, Y.; Suzuki, K.; Michihata, M.; Takamasu, K.; Takahashi, S. Flexible Evanescent Wave Interference Lithography System for Sub-Half-Wavelength Complex Relief Structures Fabrication. Nanomanuf. Metrol. 2021, 4, 256–270. [Google Scholar] [CrossRef]
- Pandey, G.N.; Shukla, A.K.; Thapa, K.B.; Singh, M.; Singh, R.C. Simulation of 2D Interference Pattern Structure for Rectangular and Circular Slits Using Dual Beam Interference Technique. Macromol. Symp. 2021, 397, 2100001. [Google Scholar] [CrossRef]
- Liu, R.; Cao, L.; Liu, D.; Wang, L.; Saeed, S.; Wang, Z. Laser Interference Lithography—a Method for the Fabrication of Controlled Periodic Structures. Nanomaterials 2023, 13, 1818. [Google Scholar] [CrossRef] [PubMed]
- Mazloumi, M.; Sabat, R.G. Real-Time Imaging of Plasmonic Concentric Circular Gratings Fabricated by Lens–Axicon Laser Interference Lithography. Micromachines 2023, 14, 1981. [Google Scholar] [CrossRef] [PubMed]
- Mazloumi, M.; Dawson, E.; Sabat, R.G. Hierarchical Concentric Surface Patterns and Metasurfaces on Azobenzene Molecular Glass Films Using Axicon Interference Lithography. Opt. Mater. 2023, 136, 113428. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, Z.; Liang, W.; Zhao, C.; Zhai, T.; Zhao, Y.; Jiang, Y.; Yan, Y. Compact Microsphere Self-Interference Lithography for Polarization-Controlled Laser Parallel Nanofabrication. Opt. Lett. 2025, 50, 1248. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Dong, L.; Sun, B.; Wang, Y.; Wang, L.; Weng, Z.; Tian, Y. Fabrication of Cross-Scale Structures by Moiré Effect in Laser Interference Lithography. Appl. Phys. B 2022, 128, 204. [Google Scholar] [CrossRef]
- Mahmood, R.; Ramirez, A.V.; Hillier, A.C. Creating Two-Dimensional Quasicrystal, Supercell, and Moiré Lattices with Laser Interference Lithography: Implications for Photonic Bandgap Materials. ACS Appl. Nano Mater. 2021, 4, 8851–8862. [Google Scholar] [CrossRef]
- Ushkov, A.A.; Verrier, I.; Kampfe, T.; Jourlin, Y. Subwavelength Diffraction Gratings with Macroscopic Moiré Patterns Generated via Laser Interference Lithography. Opt. Express 2020, 28, 16453–16468. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, F.; Luo, L.; Li, X. A Review on Recent Advances in Signal Processing in Interferometry. Sensors 2025, 25, 5013. [Google Scholar] [CrossRef]
- Shimizu, Y.; Ito, T.; Li, X.; Kim, W.; Gao, W. Design and Testing of a Four-Probe Optical Sensor Head for Three-Axis Surface Encoder with a Mosaic Scale Grating. Meas. Sci. Technol. 2014, 25, 094002. [Google Scholar] [CrossRef]
- Capraro, G.; Lipkin, M.; Möller, M.; Bolten, J.; Lemme, M.C. Phase Mask Pinholes as Spatial Filters for Laser Interference Lithography. Adv. Photonics Res. 2023, 4, 2300225. [Google Scholar] [CrossRef]
- Yin, C.; Sato, R.; Kodaka, S.; Matsukuma, H.; Gao, W. A Two-Axis Lloyd’s Mirror Interferometer with Elastically Bent Mirrors for Fabrication of Variable-Line-Spacing Scale Gratings. Precis. Eng. 2025, 94, 623–637. [Google Scholar] [CrossRef]
- Bienert, F.; Graf, T.; Ahmed, M.A. Comprehensive Theoretical Analysis of the Period Chirp in Laser Interference Lithography. Appl. Opt. 2022, 61, 2313–2326. [Google Scholar] [CrossRef]
- Wang, W.; Song, Y.; Jiang, S.; Pan, M.; Bayanheshig. Beam Drift Error and Control Technology for Scanning Beam Interference Lithography. Appl. Opt. 2017, 56, 4138–4145. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj Rao, R.R.; Bienert, F.; Moeller, M.; Bashir, D.; Hamri, A.; Celle, F.; Gamet, E.; Ahmed, M.A.; Jourlin, Y. Quantitative Investigation on a Period Variation Reduction Method for the Fabrication of Large-Area Gratings Using Two-Spherical-Beam Laser Interference Lithography. Opt. Express 2023, 31, 371. [Google Scholar] [CrossRef]
- Bienert, F.; Röcker, C.; Graf, T.; Ahmed, M.A. Bending of Lloyd’s Mirror to Eliminate the Period Chirp in the Fabrication of Diffraction Gratings. Opt. Express 2024, 32, 18430–18440. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.L.; Zhou, Q.; Li, X.H.; Lu, H.O.; Wang, W.Q.; Liu, Y.X.; Kai, N.; Hui, L. Design and fabrication of a variable-line-space grating surface for a Fresnel-grating lens based miniature spectrometer. In Proceedings of the Holography, Diffractive Optics, and Applications VIII, Beijing, China, 11–13 October 2018; Volume 10818. [Google Scholar] [CrossRef]
- Shan, S.; Li, J.; Liu, P.; Li, Q.; Wang, X.; Li, X. A Microlens Array Grating for Miniature Multi-Channel Spectrometers. Sensors 2023, 23, 8381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, X.; Ni, K.; Tian, R.; Pang, J. Holographic Fabrication of Large-Constant Concave Gratings for Wide-Range Flat-Field Spectrometers with the Addition of a Concave Lens. Opt. Express 2016, 24, 732. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ni, K.; Zhou, Q.; Yan, P.; Pang, J.; Wang, X. Improved Master-Replica Separation Process for Fabrication of a Blazed Concave Grating by Using a Combination-Type Convex Grating. Appl. Opt. 2017, 56, 298. [Google Scholar] [CrossRef]
- Li, X.; Ni, K.; Zhou, Q.; Wang, X.; Tian, R.; Pang, J. Fabrication of a Concave Grating with a Large Line Spacing via a Novel Dual-Beam Interference Lithography Method. Opt. Express 2016, 24, 10759. [Google Scholar] [CrossRef]
- Cui, C.; Li, X.; Wang, X. Grating Interferometer: The Dominant Positioning Strategy in Atomic and Close-to-Atomic Scale Manufacturing. J. Manuf. Syst. 2025, 82, 1227–1251. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Li, X. Ultraprecision Grating Positioning Technology for Wafer Stage of Lithography Machine. Laser Optoelectron. Prog. 2022, 59, 320–336. [Google Scholar]
- Li, X.; Shimizu, Y.; Ito, T.; Cai, Y.; Ito, S.; Gao, W. Measurement of Six-Degree-of-Freedom Planar Motions by Using a Multiprobe Surface Encoder. Opt. Eng. 2014, 53, 122405. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Ni, K.; Zhou, Q.; Mao, X.; Zeng, L.; Wang, X.; Xiao, X. Two-Probe Optical Encoder for Absolute Positioning of Precision Stages by Using an Improved Scale Grating. Opt. Express 2016, 24, 21378–21391. [Google Scholar] [CrossRef]
- Xiang, X.; Jia, W.; Xiang, C.; Li, M.; Bu, F.; Zhu, S.; Zhou, C.; Wei, C. Long-range in situ picometer measurement of the period of an interference field. Appl. Opt. 2019, 58, 2929–2935. [Google Scholar] [CrossRef]
- Lin, Z.; Deng, X.; Wu, Y.; Feng, J.; Zhu, H.; Yang, Y.; Yu, J.; Xue, D.; Wang, J.; Shi, Y.; et al. Grating Pitch Comparator Traceable to the Cr Atom Transition Frequency. Measurement 2025, 242, 115895. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, L. Fabrication of Optical Mosaic Gratings: A Self-Referencing Alignment Method. Opt. Express 2011, 19, 8985. [Google Scholar] [CrossRef]
- Xue, D.; Deng, X.; Dun, X.; Wang, J.; Wang, Z.; Cheng, X. Improving Grating Duty Cycle Uniformity: Amplitude-Splitting Flat-Top Beam Laser Interference Lithography. Appl. Opt. 2024, 63, 2065. [Google Scholar] [CrossRef]
- Yang, Y.K.; Wu, Y.X.; Lin, T.H.; Fu, C.C. Energy and Cost Efficient Manufacturing of Uniform Periodic Nanostructures Enabled by an Adaptable Beam Flattening Device. J. Micromech. Microeng. 2024, 35, 015008. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, L. Controlling the Duty Cycle of Holographic Crossed Gratings by in Situ Endpoint Detection during Development. Appl. Opt. 2016, 55, 2657–2663. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, L. Analysis and Minimization of Spacing Error of Holographic Gratings Recorded with Spherical Collimation Lenses. Opt. Express 2015, 23, 5532–5546. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Bao, M.; Chen, Y.; Ye, H.; Fan, J.; Shi, G. Accuracy characterization of Shack–Hartmann Sensor with Residual Error Removal in Spherical Wavefront Calibration. Light Adv. Manuf. 2024, 4, 393–403. [Google Scholar] [CrossRef]
- Qiu, P.; Yuan, D.; Huang, J.; Li, J.; Hu, J.; Xu, S. Polarization-Modulated Patterned Laser Sculpturing of Optical Functional Hierarchical Micro/Nanostructures. Adv. Opt. Mater. 2024, 12, 2302762. [Google Scholar] [CrossRef]
- Wang, X.; Jia, T.; Zhu, J.; Su, Y.; Zhang, L.; Yang, H.; Yi, Z.; Qi, Y. Theoretical Study of Micro-Structure Fabrication by Multi-Beam Laser Interference Lithography with Different Polarization Combinations. Mod. Phys. Lett. B 2021, 35, 21504595. [Google Scholar] [CrossRef]
- Sarkar, S.; Samanta, K.; Joseph, J. Study of Polarization Effects in Phase-Controlled Multi-Beam Interference Lithography towards the Realization of Sub-Micron Photonic Structures. J. Opt. 2020, 22, 085105. [Google Scholar] [CrossRef]
- Chen, X.; Shimizu, Y.; Chen, C.; Chen, Y.L.; Gao, W. Generalized Method for Probing Ideal Initial Polarization States in Multibeam Lloyd’s Mirror Interference Lithography of 2D Scale Gratings. J. Vac. Sci. Technol. B 2018, 36, 021601. [Google Scholar] [CrossRef]
- Chen, X.; Ren, Z.; Shimizu, Y.; Chen, Y.l.; Gao, W. Optimal Polarization Modulation for Orthogonal Two-Axis Lloyd’s Mirror Interference Lithography. Opt. Express 2017, 25, 22237–22252. [Google Scholar] [CrossRef]
- Xue, G.; Lu, H.; Li, X.; Zhou, Q.; Wu, G.; Wang, X.; Zhai, Q.; Ni, K. Patterning Nanoscale Crossed Grating with High Uniformity by Using Two-Axis Lloyd’s Mirrors Based Interference Lithography. Opt. Express 2020, 28, 2179. [Google Scholar] [CrossRef]
- Xue, G.; Lin, L.; Zhai, Q.; Zhou, Q.; Wang, X.; Li, X. Modulation of Dielectric Film on Two-Axis Lloyd’s Mirrors for Patterning High-Uniformity Nanoscale Grating. In Proceedings of the 2021 International Conference on Optical Instruments and Technology: Micro/Nano Photonics: Materials and Devices, Chengdu, China, 2–6 July 2021; Huang, L., Yi, Y.S., Li, B., Wang, X., Eds.; SPIE: Bellingham, WA, USA, 2022; p. 21. [Google Scholar] [CrossRef]
- Miller, D.B.; Jones, A.; McLeod, R.R. Contrast Analysis in Two-Beam Laser Interference Lithography. Appl. Opt. 2020, 59, 5399–5407. [Google Scholar] [CrossRef]
- Song, J.; Liu, B.; Shan, X.; Wang, F.; Zhong, X. Multi-Functional Dual-Path Self-Aligned Polarization Interference Lithography. Opt. Express 2023, 31, 17629–17644. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, W.; Cao, X.W.; Yu, Y.H.; Juodkazis, S.; Chen, Q.D. Holographic Laser Fabrication of 3D Artificial Compound μ-Eyes. Light Adv. Manuf. 2024, 4, 339–347. [Google Scholar] [CrossRef]
- Behera, S.; Kumar, M.; Joseph, J. Submicrometer Photonic Structure Fabrication by Phase Spatial-Light-Modulator-Based Interference Lithography. Opt. Letters 2016, 41, 1893–1896. [Google Scholar] [CrossRef]
- Lutkenhaus, J.; George, D.; Moazzezi, M.; Philipose, U.; Lin, Y. Digitally Tunable Holographic Lithography Using a Spatial Light Modulator as a Programmable Phase Mask. Opt. Express 2013, 21, 26227–26235. [Google Scholar] [CrossRef]
- Ohlinger, K.; Lutkenhaus, J.; Arigong, B.; Zhang, H.; Lin, Y. Spatially Addressable Design of Gradient Index Structures through Spatial Light Modulator Based Holographic Lithography. J. Appl. Phys. 2013, 114, 213102. [Google Scholar] [CrossRef]
- Xavier, J.; Joseph, J. Complex Photonic Lattices Embedded with Tailored Intrinsic Defects by a Dynamically Reconfigurable Single Step Interferometric Approach. Appl. Phys. Lett. 2014, 104, 081104. [Google Scholar] [CrossRef]
- Lee, U.; Kim, H.; Oh, D.K.; Lee, N.; Park, J.; Park, J.; Son, H.; Noh, H.; Rho, J.; Ok, J.G. Azimuthal Rotation-Controlled Nanoinscribing for Continuous Patterning of Period- and Shape-Tunable Asymmetric Nanogratings. Microsyst. Nanoeng. 2024, 10, 60. [Google Scholar] [CrossRef]
- Ura, S.; Kintaka, K.; Awazu, H.; Awatsuji, Y.; Nishii, J. Phase-Shifting Mask Design for Interference Exposure of Chirp Blazed Grating. Opt. Rev. 2011, 18, 99–102. [Google Scholar] [CrossRef]
- Kim, H.; Jung, H.; Lee, D.H.; Lee, K.B.; Jeon, H. Period-Chirped Gratings Fabricated by Laser Interference Lithography with a Concave Lloyd’s Mirror. Appl. Opt. 2016, 55, 354–359. [Google Scholar] [CrossRef]
- Qi, W.H.; Zhao, T.Y.; Gao, Q.H.; Lu, J.J.; Cai, L.Q.; Li, Y.; Yan, G.; Zhang, W.M. 3-DOF Decoupled Magnetic Platform for Optical Low-Frequency Vibration Isolation. Int. J. Mech. Sci. 2025, 300, 110429. [Google Scholar] [CrossRef]
- Kumpulainen, T.; Singh, A.; März, T.; Dong, L.; Reuna, J.; Vihinen, J.; Li, D.; Levänen, E. Interference System for High Pressure Environment. Opt. Laser Technol. 2021, 142, 107278. [Google Scholar] [CrossRef]
- Jie, W.; Guangyao, H.; Guochao, W.; Yaning, W.; Mei, H.; Qixue, L.; Lingxiao, Z.; Xinghui, L.; Shuhua, Y.; Jun, Y. One-Thousandth-Level Laser Power Stabilization Based on Optical Feedback from a Well-Designed High-Split-Ratio and Nonpolarized Beam Splitter. Appl. Opt. 2021, 60, 7798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Vibration Characteristics and Optimization Design of Optical Platform Based on Double-Layer Vibration Isolation Technology. In Proceedings of the International Conference on Mechanisms and Robotics (ICMAR 2022), Zhuhai, China, 25–27 February 2022; Pei, Z., Ed.; SPIE: Bellingham, WA, USA, 2022; p. 91. [Google Scholar] [CrossRef]
- Gong, W.; Li, A.; Huang, C.; Che, H.; Feng, C.; Qin, F. Effects and Prospects of the Vibration Isolation Methods for an Atomic Interference Gravimeter. Sensors 2022, 22, 583. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Dwivedi, G.; Singh, O. Portable Digital Holographic Camera Featuring Enhanced Field of View and Reduced Exposure Time. Opt. Lasers Eng. 2021, 137, 106359. [Google Scholar] [CrossRef]
- Wang, G.; Gao, L.; Huang, G.; Lei, X.; Cui, C.; Wang, S.; Yang, M.; Zhu, J.; Yan, S.; Li, X. A Wavelength-Stabilized and Quasi-Common-Path Heterodyne Grating Interferometer with Sub-Nanometer Precision. IEEE Trans. Instrum. Meas. 2024, 73, 7002509. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Minoshima, K. Dimensional Metrology Based on Ultrashort Pulse Laser and Optical Frequency Comb. CIRP Ann. 2025, 74, 993–1018. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, N.; Liu, Y.; Zhang, L.; Liu, Z. Theoretical Exposure Dose Modeling and Phase Modulation to Pattern a VLS Plane Grating with Variable-Period Scanning Beam Interference Lithography. Appl. Sci. 2022, 12, 7946. [Google Scholar] [CrossRef]
- Miller, D.B.; McLeod, R.R. Uniform Large Area Super-Resolved Interference Lithography via Beam Scanning. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, Online, 6–11 March 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11696, pp. 49–56. [Google Scholar] [CrossRef]
- Deka, A.; Mihaylova, D.S.; Tonchev, S.H.; Zheleznyak, S.L. A Novel Method for Fabrication of Dual-Blazed Diffraction Gratings Using Mosaicking Technique. Opt. Laser Technol. 2023, 163, 109414. [Google Scholar] [CrossRef]
- Daiya, D.; Patidar, R.K.; Moorti, A.; Benerji, N.S.; Bindra, K.S. Online Monitoring and Active Control of Alignment Errors in a Tiled Grating Assembly Using Single Wedge Plate. Opt. Lasers Eng. 2023, 161, 107355. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, S.; Li, Y.; Jiang, Y.; Wang, W.; Bayanheshig. Fabrication of Ultra-High Aspect Ratio Silicon Grating Using an Alignment Method Based on a Scanning Beam Interference Lithography System. Opt. Express 2022, 30, 40842. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, Y.; Zeng, L. Achieving Unlimited Recording Length in Interference Lithography via Broad-Beam Scanning Exposure with Self-Referencing Alignment. Sci. Rep. 2017, 7, 926. [Google Scholar] [CrossRef]
- Ma, D.; Zeng, L. Fabrication of Low-Stray-Light Gratings by Broad-Beam Scanning Exposure in the Direction Perpendicular to the Grating Grooves. Opt. Lett. 2015, 40, 1346. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.N.; Lu, T.S.; Deng, F.Y.; Wang, X.H.; Li, X.H. Analysis and simulation of spatial phase alignment for fabrication of double-layer grating. In Proceedings of the Optical Design and Testing XIII, Beijing, China, 14–15 October 2023; Volume 12765. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Bayanheshig.; Liu, Z.; Wang, W.; Jiang, S.; Li, Y.; Li, S.; Zhang, W.; Jiang, Y.; et al. Controlling the Wavefront Aberration of a Large-Aperture and High-Precision Holographic Diffraction Grating. Light Sci. Appl. 2025, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, H.; Li, Y.; Jiang, S.; Wang, W.; Song, Y.; Bayanheshig.; Li, W. Active Control Technology of a Diffraction Grating Wavefront by Scanning Beam Interference Lithography. Opt. Express 2021, 29, 37066–37074. [Google Scholar] [CrossRef]
- Jiang, S.; Lü, B.; Song, Y.; Liu, Z.; Wang, W.; Shuo, L.; Bayanheshig. Heterodyne Period Measurement in a Scanning Beam Interference Lithography System. Appl. Opt. 2020, 59, 5830–5836. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Tan, W.; Tang, Z.; Lin, Z.; Cheng, X.; Li, T. Scanning and Splicing Atom Lithography for Self-Traceable Nanograting Fabrication. Nanomanuf. Metrol. 2022, 5, 179–187. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Lu, T.; Li, X. High Dynamic Wavefront Stability Control for High-Uniformity Periodic Microstructure Fabrication. Precis. Eng. 2025, 93, 216–223. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, W.; Liu, L.; Wang, Z.; Zhang, J.; Song, Z.; Weng, Z.; Hu, Z.; Yue, Y.; Li, D. Phase-Shift Control in Two-Beam Laser Interference Lithography. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2021; IEEE: Piscataway, NJ, USA, 2011; pp. 579–583. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Chen, X.; Liu, Z.; Wang, W.; Song, Y.; Bayanheshig. Accurate Measurement and Adjustment Method for Interference Fringe Direction in a Scanning Beam Interference Lithography System. Opt. Express 2023, 31, 28145–28160. [Google Scholar] [CrossRef]
- Wang, L.; Luo, W.; Zhang, M.; Zhu, Y. Design on constant coherent light intensity fringe locking system for scanning beam interference lithography. Opt. Precis. Eng. 2022, 30, 938–947. [Google Scholar] [CrossRef]
- Lu, S.; Yang, K.; Zhu, Y.; Zhang, M.; Wang, L.; Hu, C. Analysis and controller design of fringe phase locking system for interference lithography. Acta Photonica Sin. 2017, 46, 123001. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, X.; Jiang, Y.; Bayanheshig.; Qi, X. Interference Fringe Locking by Grating-Shifting Holographic Grating Exposure. Chin. J. Lasers 2015, 44, 0509001. [Google Scholar] [CrossRef]
- Xu, Y.; Liao, Q.; Liu, J. Fringe Locking System with Large Phase Compensation Range for Holographic Exposure Systems with Arbitrary Recording Wavefronts. Opt. Laser Technol. 2025, 183, 112254. [Google Scholar] [CrossRef]
- Haefner, M.; Pruss, C.; Osten, W. Laser Direct Writing of Rotationally Symmetric High-Resolution Structures. Appl. Opt. 2011, 50, 5983–5989. [Google Scholar] [CrossRef]
- Lu, S.; Yang, K.; Zhu, Y.; Wang, L.; Zhang, M. Analysis and Design of Fringe Phase Control System for Scanning Beam Interference Lithography. Opt. Eng. 2021, 60, 064107. [Google Scholar] [CrossRef]
- Lu, S.; Yang, K.; Zhu, Y.; Wang, L.; Zhang, M. Optimal Control for Stabilizing Fringe Phase in Interference Lithography. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020; pp. 173–176. [Google Scholar] [CrossRef]
- Cao, L.; Lu, S.; Yang, K.; Zhang, M.; Zhu, Y. Optical Interference Phase Control Method with Single Photodetector for Interference Lithography. Opt. Express 2023, 31, 40086. [Google Scholar] [CrossRef]
- Shao, C.; Li, X. Technologies for Fabricating Large-Size Diffraction Gratings. Sensors 2025, 25, 1990. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qiu, K.; Chen, H. Method to Overlay an Interference Field over a Grating Using Only the Grating’s Profile Symmetry. Opt. Lett. 2024, 49, 2906–2909. [Google Scholar] [CrossRef]
- Pandey, S.; Samanta, K.; Ahuja, J.; Joseph, S.; Joseph, J. Designing a Square Periodic Racemic Helix Photonic Metamaterial Using Phase-Controlled Interference Lithography for Tailored Chiral Response. Opt. Laser Technol. 2024, 172, 110489. [Google Scholar] [CrossRef]
- Han, J.; Ding, J.; Lizon, J.L.; Qiqige, X.; Wang, R.; Zhang, K.; Xiao, D. Spatially Synchronous Fringe Detection: A Method to Facilitate the Alignment of an Echelle Grating Mosaic by Separating the Compensative Angular Errors. Appl. Opt. 2024, 63, 3529. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Zhong, Z.; Li, X. Global Alignment Reference Strategy for Laser Interference Lithography Pattern Arrays. Microsyst. Nanoeng. 2025, 11, 41. [Google Scholar] [CrossRef]
- Komorowski, P.; Zagrajek, P.; Piszczek, M.; Czerwińska, E.; Pałka, N. Wavelength Measurement of Narrowband Terahertz Radiation Using a Diffraction Grating. Measurement 2024, 230, 114513. [Google Scholar] [CrossRef]
- Cui, C.; Gao, L.; Zhao, P.; Yang, M.; Liu, L.; Ma, Y.; Huang, G.; Wang, S.; Luo, L.; Li, X. Towards Multi-Dimensional Atomic-Level Measurement: Integrated Heterodyne Grating Interferometer with Zero Dead-Zone. Light Adv. Manuf. 2025, 6, 319–332. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Li, X. Cross-Scale Structures Fabrication via Hybrid Lithography for Nanolevel Positioning. Microsyst. Nanoeng. 2025, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.Y.; Lu, T.S.; Zhai, Q.H.; Luo, L.B.; Xue, G.P.; Zhou, Q.; Wang, X.H.; Li, X.H. A four-step laser interference lithography for patterning pixelated micro-polarizer array. In Proceedings of the Holography, Diffractive Optics, and Applications XII, Online, 5–11 December 2022; Volume 12318. [Google Scholar] [CrossRef]
- Wang, S.; Luo, L.; Li, X. Design and Parameter Optimization of Zero Position Code Considering Diffraction Based on Deep Learning Generative Adversarial Networks. Nanomanuf. Metrol. 2024, 7, 2. [Google Scholar] [CrossRef]
- Wang, S.; Luo, L.; Zhu, J.; Shi, N.; Li, X. An Ultra-Precision Absolute-Type Multi-Degree-of-Freedom Grating Encoder. Sensors 2022, 22, 9047. [Google Scholar] [CrossRef]
- Wekalao, J.; Alsalman, O.; Patel, S.K. Square-Slotted Metasurface Optical Sensor Based on Graphene Material for Efficient Detection of Brain Tumor Using Machine Learning. Measurement 2025, 253, 117812. [Google Scholar] [CrossRef]
Reference | Interference Structure | Min. Period | Uniformity | Exposure Throughput |
---|---|---|---|---|
[102] | Orthogonal Two-Axis Lloyd’s Mirror | 500 nm | High uniformity | Exposure area limited by the aperture of the holographic lens |
[103] | Orthogonal Two-Axis Lloyd’s Mirror | 720 nm | High uniformity | Single-shot exposure of 30 × 30 mm2 |
[104] | Non-Orthogonal Two-Axis Lloyd’s Mirror | 1000 nm | / | Single-shot exposure of 100 × 100 mm2 |
[84] | Single-Axis Lloyd’s Mirror | 1000 nm | Thickness non-uniformity: 5% | Exposure of 25 mm diameter area; Exposure time: 30 min |
[105] | Three-Beam Interference | 365 nm | Etched hole size std: <3% | Limited only by sample stage speed |
[88] | EUV Interference | 14 nm | Low uniformity | Low |
[93] | Plasmonic Interference | 22 nm | / | Theoretical high |
Technical Types | Phase-Shifting | Grating-Shifting | Frequency-Shifting |
---|---|---|---|
Controlled Degrees of Freedom | Simultaneous phase and period | Phase only | Primarily phase |
Actuator | PZT linear actuator and PZT rotation stage | PZT linear actuator and beam splitter grating | Acousto-Optic Modulator (AOM) |
Advantages | Simple, direct phase control | Insensitive to downstream optics | High-speed response, unlimited phase control range |
Disadvantages | Bandwidth limited | Mechanical actuator limits bandwidth; single-axis | Highest system complexity and cost; nonlinear response |
Control Bandwidth | >250 Hz | >500 Hz | >800 Hz (up to 2.5 kHz with lead controller) |
Control Accuracy | RMS: Phase drift < 9.0 × periods; Period drift < 1.5 × periods | 3σ: 0.13 rad (±0.021 periods) | 3σ: <0.0693 rad (±0.01 periods) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, X. Interference Field Control for High-Uniformity Nanopatterning: A Review. Sensors 2025, 25, 5719. https://doi.org/10.3390/s25185719
Li J, Li X. Interference Field Control for High-Uniformity Nanopatterning: A Review. Sensors. 2025; 25(18):5719. https://doi.org/10.3390/s25185719
Chicago/Turabian StyleLi, Jingwen, and Xinghui Li. 2025. "Interference Field Control for High-Uniformity Nanopatterning: A Review" Sensors 25, no. 18: 5719. https://doi.org/10.3390/s25185719
APA StyleLi, J., & Li, X. (2025). Interference Field Control for High-Uniformity Nanopatterning: A Review. Sensors, 25(18), 5719. https://doi.org/10.3390/s25185719