Online Centralized MPC for Lane Merging in Vehicle Platoons
Abstract
1. Introduction
2. Methodology
- First, we generate the reference trajectory offline by giving the initial and the final configuration of the vehicles. This trajectory generation uses a linear function for transition of vehicles from their initial (upper) to final (lower) lane positions. This generation of a reference trajectory is computed outside of the MPC and does not take into account collisions between vehicles.
- The reference trajectory is then used in the online centralized controller (i.e., MPC) which solves an optimization problem with respect to state, input, and collision avoidance constraints. The MPC recalculates the optimal inputs at every time step using updated measurements, rather than relying on a pre-planned trajectory that may no longer be optimal. This allows minimal acceleration and braking. The controller finally delivers the computed optimal acceleration, braking, and steering to the vehicles.
2.1. Dynamic Model of the Vehicle
2.2. Motion Planning of Vehicles
2.3. Energy Saving
3. Results and Discussion
3.1. Coordinated Maneuvering and Dynamics Across Platoon Sizes
3.1.1. Results for Platoon Size 2
3.1.2. Results for Platoon Size 4
3.1.3. Results for Platoon Size 6
3.2. Effect of Prediction Horizon on Merging Sequence
3.3. Optimal Prediction Horizon for Stable and Energy Efficient Platooning
3.4. Robustness to Disturbance
3.5. Computational Complexity and Scalability
3.6. Effect of Road Friction
3.7. Communication Delay Effects
4. Sensitivity Analysis
5. Limitation and Future Work
5.1. Vehicle Modeling Assumptions
5.2. Communication Constraints
5.3. Scalability to Large Platoons
5.4. Reference Trajectory Quality
5.5. Robustness to Disturbances
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPC | Model Predictive Control |
CFTOC | Constraint Finite Time Optimal Control |
IPOPT | Interior Point Optimizer (Solver) |
V2V | Vehicle to Vehicle Communication |
V2X | Vehicle to Everything Communication |
Appendix A
References
- Al Alam, A.; Gattami, A.; Johansson, K.H. An experimental study on the fuel reduction potential of heavy duty vehicle platooning. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 306–311. [Google Scholar] [CrossRef]
- Almaskati, D.; Kermanshachi, S.; Pamidimukkula, A. Autonomous vehicles and traffic accidents. Transp. Res. Procedia 2023, 73, 321–328. [Google Scholar] [CrossRef]
- Narayanan, S.; Chaniotakis, E.; Antoniou, C. Shared autonomous vehicle services: A comprehensive review. Transp. Res. Part C Emerg. Technol. 2020, 111, 255–293. [Google Scholar] [CrossRef]
- Xu, K.; Cassandras, C.G.; Xiao, W. Decentralized Time and Energy-Optimal Control of Connected and Automated Vehicles in a Roundabout. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 681–686. [Google Scholar] [CrossRef]
- Sun, C.; Guanetti, J.; Borrelli, F.; Moura, S.J. Optimal Eco-Driving Control of Connected and Autonomous Vehicles Through Signalized Intersections. IEEE Internet Things J. 2020, 7, 3759–3773. [Google Scholar] [CrossRef]
- Alam, A.; Besselink, B.; Turri, V.; Martensson, J.; Johansson, K.H. Heavy-duty vehicle platooning for sustainable freight transportation: A cooperative method to enhance safety and efficiency. IEEE Control Syst. 2015, 35, 34–56. [Google Scholar] [CrossRef]
- Sun, X.; Yin, Y. Behaviorally stable vehicle platooning for energy savings. Transp. Res. Part C Emerg. Technol. 2019, 99, 37–52. [Google Scholar] [CrossRef]
- Swaroop, D.; Hedrick, J.K.; Chien, C.C.; Ioannou, P. A comparision of spacing and headway control laws for automatically controlled vehicles. Veh. Syst. Dyn. 1994, 23, 597–625. [Google Scholar] [CrossRef]
- Rajamani, R.; Tan, H.S.; Law, B.K.; Zhang, W.B. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans. Control Syst. Technol. 2000, 8, 695–708. [Google Scholar] [CrossRef]
- Tan, H.S.; Rajesh, R.; Zhang, W.B. Demonstration of an automated highway platoon system. Proc. Am. Control Conf. 1998, 3, 1823–1827. [Google Scholar] [CrossRef]
- Dunbar, W.B.; Caveney, D.S. Distributed receding horizon control of vehicle platoons: Stability and string stability. IEEE Trans. Automat. Contr. 2012, 57, 620–633. [Google Scholar] [CrossRef]
- Loria, A.; Dasdemir, J.; Jarquin, N.A. Leader-follower formation and tracking control of mobile robots along straight paths. IEEE Trans. Control Syst. Technol. 2016, 24, 727–732. [Google Scholar] [CrossRef]
- Chunyu, J.; Qu, Z.; Pollak, E.; Falash, M. A new multi-objective control design for autonomous vehicles. In Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 2009; Volume 381, pp. 81–102. [Google Scholar]
- Firoozi, R.; Zhang, X.; Borrelli, F. Formation and reconfiguration of tight multi-lane platoons. Control Eng. Pract. 2021, 108, 104714. [Google Scholar] [CrossRef]
- Cong, H.; Quan, S.; Ding, W.; Mei, P.; Karimi, H. A robust MPC approach for platooning control ofautomated vehicles with constraints on acceleration. Control Eng. Pract. J. 2023, 139, 105648. [Google Scholar]
- Chen, X.; Mårtensson, J. Optimization Based Merging Coordination of Connected and Automated Vehicles and Platoons. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2547–2553. [Google Scholar] [CrossRef]
- Pi, D.; Xue, P.; Wang, W.; Xie, B.; Wang, H.; Wang, X.; Yin, G. Automotive platoon energy-saving: A review. Renew. Sustain. Energy Rev. 2023, 179, 113268. [Google Scholar] [CrossRef]
- Liu, P.; Kurt, A.; Ozguner, U. Distributed model predictive control for cooperative and flexible vehicle platooning. IEEE Trans. Control Syst. Technol. 2019, 27, 1115–1128. [Google Scholar] [CrossRef]
- Gratzer, A.L.; Thormann, S.; Schirrer, A.; Jakubek, S. String stable and collision-safe model predictive platoon control. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19358–19373. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, J.; Wu, W.; Negenborn, R.R. Cooperative distributed predictive control for collision-free vehicle platoons. IET Intell. Transp. Syst. 2019, 13, 816–824. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, S.; Chen, H.; Li, Y.; Shi, S.; Yu, J.; Chen, H. Distributed MPC of vehicle platoons with guaranteed consensus and string stability. Sci. Rep. 2023, 13, 10396. [Google Scholar] [CrossRef]
- Kazemi, A.; Sharifi, I.; Talebi, H.A. Longitudinal and lateral control of vehicle platoons using Laguerre-based and robust MPC with merge and exit maneuvers. Control Eng. Pract. 2024, 142, 105737. [Google Scholar] [CrossRef]
- Brown, M.; Funke, J.; Erlien, S.; Gerdes, J.C. Safe driving envelopes for path tracking in autonomous vehicles. Control Eng. Pract. 2017, 61, 307–316. [Google Scholar] [CrossRef]
- Michalska, H.; Mayne, D.Q. Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automat. Contr. 1993, 38, 1623–1633. [Google Scholar] [CrossRef]
- Krener, A.J. Adaptive horizon model predictive control. IFAC-PapersOnLine 2018, 51, 31–36. [Google Scholar] [CrossRef]
- Chen, Z.; Lai, J.; Li, P.; Awad, O.I.; Zhu, Y. Prediction Horizon-Varying Model Predictive Control (MPC) for Autonomous Vehicle Control. Electronics 2024, 13, 1442. [Google Scholar] [CrossRef]
- Li, Y.; He, H.; Peng, J. An Adaptive Online Prediction Method With Variable Prediction Horizon for Future Driving Cycle of the Vehicle. IEEE Access 2018, 6, 33062. [Google Scholar] [CrossRef]
- Gardezi, M.S.M.; Hasan, A. Machine learning based adaptive prediction horizon in finite control set model predictive control. IEEE Access 2018, 6, 32392–32400. [Google Scholar] [CrossRef]
- Ma, A.; Liu, K.; Zhang, Q.; Liu, T.; Xia, Y. Event-triggered distributed MPC with variable prediction horizon. IEEE Trans. Automat. Contr. 2021, 66, 4873–4880. [Google Scholar] [CrossRef]
- Yue, S.; Zong, F.; Dantsuji, T.; Ngoduy, D. A platoon-based cooperative merging ecological control framework under connected environment. In Proceedings of the Australasian Transport Research Forum, Melbourne, Australia, 27–29 November 2024; pp. 1–15. [Google Scholar]
- Zhang, L.; Wang, Y.; Zhu, H. Theory and Experiment of Cooperative Control at Multi-Intersections in Intelligent Connected Vehicle Environment: Review and Perspectives. Sustainability 2022, 14, 1542. [Google Scholar] [CrossRef]
- Jurczenia, K.; Rak, J. A Survey of Vehicular Network Systems for Road Traffic Management. IEEE Access 2022, 10, 42365–42385. [Google Scholar] [CrossRef]
- Turri, V.; Besselink, B.; Johansson, K.H. Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle Platooning. IEEE Trans. Control Syst. Technol. 2017, 25, 12–28. [Google Scholar] [CrossRef]
- Yu, K.; Yang, H.; Tan, X.; Kawabe, T.; Guo, Y.; Liang, Q.; Fu, Z.; Zheng, Z. Model Predictive Control for Hybrid Electric Vehicle Platooning Using Slope Information. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1894–1909. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Wang, J.; Liu, Z.; Li, J.; Nie, J.; Shen, Y.; Wu, L. Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication. Energy 2019, 189, 116120. [Google Scholar] [CrossRef]
- Zhan, J.; Jiang, Z.-P.; Wang, Y.; Li, X. Distributed Model Predictive Consensus With Self-Triggered Mechanism in General Linear Multiagent Systems. IEEE Trans. Ind. Inform. 2019, 15, 3987–3997. [Google Scholar] [CrossRef]
- Ma, F.; Yang, Y.; Wang, J.; Li, X.; Wu, G.; Zhao, Y.; Wu, L.; Aksun-Guvenc, B.; Guvenc, L. Eco-driving-based cooperative adaptive cruise control of connected vehicles platoon at signalized intersections. Transp. Res. Part D Transp. Environ. 2021, 92, 102746. [Google Scholar] [CrossRef]
- He, Z.C.; Kang, H.; Li, E.; Zhou, E.L.; Cheng, H.T.; Huang, Y.Y. Coordinated control of heterogeneous vehicle platoon stability and energy-saving control strategies. Phys. A Stat. Mech. Its Appl. 2022, 606, 128155. [Google Scholar] [CrossRef]
- Han, X.; Ma, R.; Zhang, H.M. Energy-aware trajectory optimization of CAV platoons through a signalized intersection. Transp. Res. Part C Emerg. Technol. 2020, 118, 102652. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, T.; Borrelli, F.; Tseng, E.; Hrovat, D. Predictive Control of Autonomous Ground Vehicles With Obstacle Avoidance on Slippery Roads. In Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cambridge, MA, USA, 12–15 September 2010; Volume 1, pp. 265–272. [Google Scholar] [CrossRef]
- Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and dynamic vehicle models for autonomous driving control design. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Rupublic of Korea, 28 June–1 July 2015; pp. 1094–1099. [Google Scholar] [CrossRef]
- Chemali, E.; Preindl, M.; Malysz, P.; Emadi, A. Electrochemical and Electrostatic Energy Storage and Management Systems for Electric Drive Vehicles: State-of-the-Art Review and Future Trends. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1117–1134. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Li, X. The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation. Energy Policy 2020, 141, 111463. [Google Scholar] [CrossRef]
- Naryanto, R.F.; Setiyawan, A.; Roziqin, A.; Maulana, S.; Darsono, F.B.; Andika, I.G.M.; Delimayanti, M.K.; Widodo, R.A. An aerodynamic analysis of energy saving car based on computational fluid dynamic using solidworks. AIP Conf. Proc. 2024, 3222, 50008. [Google Scholar] [CrossRef]
- Ma, Z.; Sun, D. Energy Recovery Strategy Based on Ideal Braking Force Distribution for Regenerative Braking System of a Four-Wheel Drive Electric Vehicle. IEEE Access 2020, 8, 136234–136242. [Google Scholar] [CrossRef]
- Alizadehghobadi, S.; Ehsani, R. Robust Invariant Set Design for Reliable Stopping in Adaptive Cruise Control via Model Predictive Control. IEEE Access 2025, 13, 81096–81104. [Google Scholar] [CrossRef]
- Zhang, X.; Liniger, A.; Borrelli, F. Optimization-Based Collision Avoidance. IEEE Trans. Control. Syst. Technol. 2021, 29, 972–983. [Google Scholar] [CrossRef]
Parameter | Vehicle Length | Vehicle Width | Road Width | dmin | Max/Min Acceleration | Max/Min Steering Angle | Max/Min Steering Rate Angle |
---|---|---|---|---|---|---|---|
Value | 4.5 m | 1.8 m | 3.7 m | 1 m | ±0.5 g m/s2 | ±45° | ±10° |
Horizon | 4th | 3rd | 2nd | 1st |
---|---|---|---|---|
N = 20 | ||||
N = 25 | ||||
N = 30 | ||||
N = 35 |
Noise Level | Low | Medium | High |
---|---|---|---|
dmin (m) | 1.3 | 1.6 | 2.3 |
Variable | Number of Vehicles (N = 30) | Horizon (2 Vehicle) | ||||
---|---|---|---|---|---|---|
Value | 2 | 4 | 6 | 18 | 30 | 40 |
Iteration time (s) | 0.03 | 0.053 | 0.09 | 0.016 | 0.03 | 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alizadehghobadi, S.; Singhal, M.; Ehsani, R. Online Centralized MPC for Lane Merging in Vehicle Platoons. Sensors 2025, 25, 5605. https://doi.org/10.3390/s25175605
Alizadehghobadi S, Singhal M, Ehsani R. Online Centralized MPC for Lane Merging in Vehicle Platoons. Sensors. 2025; 25(17):5605. https://doi.org/10.3390/s25175605
Chicago/Turabian StyleAlizadehghobadi, Shila, Mukesh Singhal, and Reza Ehsani. 2025. "Online Centralized MPC for Lane Merging in Vehicle Platoons" Sensors 25, no. 17: 5605. https://doi.org/10.3390/s25175605
APA StyleAlizadehghobadi, S., Singhal, M., & Ehsani, R. (2025). Online Centralized MPC for Lane Merging in Vehicle Platoons. Sensors, 25(17), 5605. https://doi.org/10.3390/s25175605