Influence of Sex and Body Size on the Validity of the Microsoft Kinect for Frontal Plane Knee Kinematics During Landings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Data Reduction
2.5. Statistical Analyses
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.-M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: A prospective cohort study of 710 athletes. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, J.; Mandelbaum, B.R.; Melancon, H.; Ryan, G.W.; Silvers, H.J.; Griffin, L.Y.; Watanabe, D.S.; Dick, R.W.; Dvorak, J. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am. J. Sports Med. 2008, 36, 1476–1483. [Google Scholar] [CrossRef]
- Gray, A.D.; Willis, B.W.; Skubic, M.; Huo, Z.; Razu, S.; Sherman, S.L.; Guess, T.M.; Jahandar, A.; Gulbrandsen, T.R.; Miller, S.; et al. Development and validation of a portable and inexpensive tool to measure the drop vertical jump using the Microsoft Kinect V2. Sports Health 2017, 9, 537–544. [Google Scholar] [CrossRef]
- Sigward, S.; Havens, K.; Powers, C. Knee separation distance and lower extremity kinematics during a drop land: Implications for clinical screening. J. Athl. Train. 2011, 46, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Kermanidis, K.L.; Maragoudakis, M.; Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Xu, L.; Xu, W.; Golyanik, V.; Habermann, M.; Fang, L.; Theobalt, C. EventCap: Monocular 3D capture of high-speed human motions using an event camera. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4967–4977. [Google Scholar] [CrossRef]
- Mathis, A.; Schneider, S.; Lauer, J.; Mathis, M.W. A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives. Neuron 2020, 108, 44–65. [Google Scholar] [CrossRef]
- Mizner, R.L.; Chmielewski, T.L.; Toepke, J.J.; Tofte, K.B. Comparison of two-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin. J. Sport Med. 2012, 22, 221. [Google Scholar] [CrossRef]
- Nagano, Y.; Sakagami, M.; Ida, H.; Akai, M.; Fukubayashi, T. Statistical modelling of knee valgus during a continuous jump test. J. Sports Biomech. 2008, 7, 342–350. [Google Scholar] [CrossRef]
- Bojicic, K.M.; Beaulieu, M.L.; Krieger, D.Y.I.; Ashton-Miller, J.A.; Wojtys, E.M. Association between lateral posterior tibial slope, body mass index, and ACL injury risk. Orthop. J. Sports Med. 2017, 5, 2325967116688664. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef]
- Kulkarni, K.; Karssiens, T.; Kumar, V.; Pandit, H. Obesity and osteoarthritis. Maturitas 2016, 89, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Messier, S.P.; Mihalko, S.L.; Legault, C.; Miller, G.D.; Nicklas, B.J.; DeVita, P.; Beavers, D.P.; Hunter, D.J.; Lyles, M.F.; Eckstein, F.; et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. JAMA—J. Am. Med. Assoc. 2013, 310, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Younan, Y.; Mulligan, M.; Singer, A.D.; Sharma, G.B.; Umpierrez, M.; Gonzalez, F.M. Correlation between subcutaneous fat measurements in knee MRI and BMI: Relationship to obesity and related co-morbidities. Acta Radiol. Open 2019, 8, 205846011985354. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Chiari, L.; Della Croce, U.; Cappozzo, A. Human movement analysis using stereophotogrammetry Part 3. Soft tissue artifact assessment and compensation. Gait Posture 2005, 21, 212–225. [Google Scholar] [CrossRef]
- Xu, X.; McGorry, R.W. The validity of the first and second generation Microsoft KinectTM for identifying joint center locations during static postures. Appl. Ergon. 2015, 49, 47–54. [Google Scholar] [CrossRef]
- Flegal, K.M.; Shepherd, J.A.; Looker, A.C.; Graubard, B.I.; Borrud, L.G.; Ogden, C.L.; Harris, T.B.; Everhart, J.E.; Schenker, N. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am. J. Clin. Nutr. 2009, 89, 500–508. [Google Scholar] [CrossRef]
- Sprowls, G.R.; Pruszynski, J.E.; Allen, B.C. Primary arthroplasty distribution of subcutaneous fat around the hip in relation to surgical approach for total hip arthroplasty. J. Arthroplast. 2016, 31, 1213–1217. [Google Scholar] [CrossRef]
- Briggs, M.S.; Spech, C.; King, R.; McNally, M.; Paponetti, M.; Bout-Tabaku, S.; Schmitt, L. Obese youth demonstrate altered landing knee mechanics unrelated to lower-extremity peak torque when compared with healthy weight youth. J. Appl. Biomech. 2021, 37, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Lerner, Z.F.; Board, W.J.; Browning, R.C. Effects of an obesity-specific marker set on estimated muscle and joint forces in walking. Med. Sci. Sports Exerc. 2014, 46, 1261–1267. [Google Scholar] [CrossRef]
- Stone, E.E.; Butler, M.; McRuer, A.; Gray, A.; Marks, J.; Skubic, M. Evaluation of the Microsoft Kinect for screening ACL injury. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 4152–4155. [Google Scholar] [CrossRef]
- Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time human pose recognition in parts from single depth images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar] [CrossRef]
- Alkhawaja, F.; Jaradat, M.; Romdhane, L. Techniques of Indoor Positioning Systems (IPS): A survey. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26–28 March 2019. [Google Scholar] [CrossRef]
- Chang, J.Y.; Nam, S.W. Fast random-forest-based human pose estimation using a multi-scale and cascade approach. ETRI J. 2013, 35, 949–959. [Google Scholar] [CrossRef]
- Gore, S.J.; Marshall, B.M.; Franklyn-Miller, A.D.; Falvey, E.C.; Moran, K.A. The number of trials required to obtain a representative movement pattern during a hurdle hop exercise. J. Appl. Biomech. 2016, 32, 295–300. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155. [Google Scholar] [CrossRef]
- Mance, M.; Prutki, M.; Dujmovic, A.; Miloševic, M.; Vrbanovic-Mijatovic, V.; Mijatovic, D. Changes in total body surface area and the distribution of skin surfaces in relation to body mass index. Burns 2020, 46, 868–875. [Google Scholar] [CrossRef]
- Pamukoff, D.N.; Holmes, S.C.; Heredia, C.E.; Gonzales, C.E.; Shumski, E.J.; Montgomery, M.M. Association Between the Functional Movement Screen and Landing Kinematics in Individuals with and Without Anterior Cruciate Ligament Reconstruction. J. Sport Rehabil. 2022, 31, 842–848. [Google Scholar] [CrossRef]
- VandenBerg, C.; Crawford, E.A.; Enselman, E.S.; Robbins, C.B.; Wojtys, E.M.; Bedi, A. Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. J. Arthrosc. Relat. Surg. 2017, 33, 317–325. [Google Scholar] [CrossRef]
Low BMI Females (n = 10) | High BMI Females (n = 10) | Low BMI Males (n = 10) | High BMI Males (n = 10) | |
---|---|---|---|---|
Age (years) | 20.9 ± 2.6 | 20.8 ± 2.0 | 21.6 ± 1.3 | 21.0 ± 1.5 |
Height (m) | 1.70 ± 0.07 | 1.67 ± 0.10 | 1.81 ± 0.07 | 1.85 ± 0.07 |
Mass (kg) | 65.24 ± 4.85 | 97.89 ± 17.75 | 77.31 ± 7.42 | 118.30 ± 15.78 |
BMI (kg/m2) | 22.52 ± 1.07 | 34.99 ± 4.40 | 23.51 ± 1.38 | 34.56 ± 3.18 |
Low BMI Females | Low BMI Males | High BMI Females | High BMI Males | |
---|---|---|---|---|
KASR at IC | 0.861 [0.442, 0.966] | 0.667 [−0.340, 0.917] | 0.831 [0.319, 0.958] | 0.728 [−0.095, 0.932] |
KASR at PKF | 0.766 [0.059, 0.942] | 0.882 [0.525, 0.971] | 0.806 [0.218, 0.952] | 0.805 [0.217, 0.952] |
Knee abduction angle at IC | 0.360 [−1.576, 0.841] | 0.172 [−2.333, 0.794] | 0.128 [−2.509, 0.783] | 0.575 [−0.713, 0.263] |
Knee abduction angle at PKF | 0.315 [−1.759, 0.830] | 0.582 [−0.681, 0.896] | 0.533 [−0.879, 0.884] | 0.760 [0.033, 0.940] |
Low BMI Females (n = 10) | Low BMI Males (n = 10) | High BMI Females (n = 10) | High BMI Males (n = 10) | |||||
---|---|---|---|---|---|---|---|---|
Kinect | Motion Capture | Kinect | Motion Capture | Kinect | Motion Capture | Kinect | Motion Capture | |
KASR IC (0–2.0) | 0.938 (0.092) | 0.817 (0.106) | 1.03 (0.121) | 0.872 (0.055) | 1.012 (0.175) | 0.786 (0.117) | 1.04 (0.109) | 0.799 (0.101) |
KASR PKF (0–2.0) | 0.995 (0.109) | 0.964 (0.286) | 1.044 (0.120) | 0.965 (0.136) | 1.032 (0.194) | 0.851 (0.199) | 1.130 (0.132) | 1.060 (0.197) |
Knee Abduction IC (°) | 1.332 (3.270) | −0.907 (4.451) | 0.244 (4.634) | 0.610 (3.022) | −0.170 (5.210) | −7.53 (3.250) | 2.842 (4.462) | −5.31 (4.576) |
Knee Abduction PKF (°) | 2.416 (3.283) | 1.251 (9.241) | 1.630 (5.972) | −5.167 (6.259) | 0.524 (5.980) | −7.695 (5.125) | 4.781 (6.130) | −6.555 (8.333) |
DVJ attempts (n) | 7.8 (2.616) | 8.8 (4.264) | 7.8 (2.573) | 13 (3.590) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neufeld, J.; Nwaokoro, V.; Pamukoff, D.N. Influence of Sex and Body Size on the Validity of the Microsoft Kinect for Frontal Plane Knee Kinematics During Landings. Sensors 2025, 25, 5593. https://doi.org/10.3390/s25175593
Neufeld J, Nwaokoro V, Pamukoff DN. Influence of Sex and Body Size on the Validity of the Microsoft Kinect for Frontal Plane Knee Kinematics During Landings. Sensors. 2025; 25(17):5593. https://doi.org/10.3390/s25175593
Chicago/Turabian StyleNeufeld, Jillian, Vital Nwaokoro, and Derek N. Pamukoff. 2025. "Influence of Sex and Body Size on the Validity of the Microsoft Kinect for Frontal Plane Knee Kinematics During Landings" Sensors 25, no. 17: 5593. https://doi.org/10.3390/s25175593
APA StyleNeufeld, J., Nwaokoro, V., & Pamukoff, D. N. (2025). Influence of Sex and Body Size on the Validity of the Microsoft Kinect for Frontal Plane Knee Kinematics During Landings. Sensors, 25(17), 5593. https://doi.org/10.3390/s25175593