Validity and Reliability of a Novel AI-Based System in Athletic Performance Assessment: The Case of DeepSport †
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Procedures
2.4. Measurement Systems
2.4.1. DeepSport System
2.4.2. OptoJump System
2.5. Data Analysis
2.6. Ethical Process
3. Results
4. Discussion
5. Conclusions
- -
- CMJ (cm): R2 = 0.210;
- -
- CMJ Anaerobic Power (W): R2 = 0.020;
- -
- SJ (cm): R2 = 0.272;
- -
- SJ Anaerobic Power (W): R2 = 0.104.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMJ | Countermovement Jump |
SJ | Squat Jump |
W | Power |
ICC | Intraclass correlation coefficient |
SDC | Smallest detectable change |
CV | Coefficient of variation |
ES | Effect size |
SEM | Standard error of measurement |
MDC | Minimal detectable change |
OLP | Ordinary Least Products regression |
References
- Shalom, A.; Gottlieb, R.; Alcaraz, P.E.; Calleja-Gonzalez, J. Unique Specific Jumping Test for Measuring Explosive Power in Young Basketball Players: Differences by Gender, Age, and Playing Positions. Sports 2024, 12, 118. [Google Scholar] [CrossRef]
- Nygaard Falch, H.; Guldteig Rædergård, H.; Van den Tillaar, R. Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps. Sports 2020, 8, 47. [Google Scholar] [CrossRef]
- Baena-Marín, M.; Rojas-Jaramillo, A.; González-Santamaría, J.; Rodríguez-Rosell, D.; Petro, J.L.; Kreider, R.B.; Bonilla, D.A. Velocity-Based Resistance Training on 1-RM, Jump and Sprint Performance: A Systematic Review of Clinical Trials. Sports 2022, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.A.; Freitas, T.T.; Pivetti, B.; Alcaraz, P.E.; Jeffreys, I.; Loturco, I. Short-Term Detraining Does Not Impair Strength, Speed, and Power Performance in Elite Young Soccer Players. Sports 2020, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Capanema, D.d.O.; de Souza, T.V.; Serrão, J.C.; Machado Pereira, A.C.; Nassis, G.P. Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: A systematic review. Sports Med. Open 2019, 5, 28. [Google Scholar] [CrossRef]
- Zhang, D.; Ji, Z.; Jiang, G.; Jiao, W. Using AI Motion Capture Systems to Capture Race Walking Technology at a Race Scene: A Comparative Experiment. Appl. Sci. 2023, 13, 113. [Google Scholar] [CrossRef]
- Murawa, M.; Krakowiak, W.; Kabaciński, J. Validity and Reliability of a Smartphone App for Vertical Jump Height Assessment Using the Marker Displacement Time Method. Appl. Sci. 2024, 14, 4843. [Google Scholar] [CrossRef]
- Zuo, C.; Ma, Y.; Sun, B.; Peng, S.; Zhang, H.; Eidelberg, D.; Guan, Y. Metabolic Imaging of Bilateral Anterior Capsulotomy in Refractory Obsessive Compulsive Disorder: An FDG PET Study. J. Cereb. Blood Flow Metab. 2013, 33, 880–887. [Google Scholar] [CrossRef]
- Longo, U.G.; Nagai, K.; Salvatore, G.; Cella, E.; Candela, V.; Cappelli, F.; Ciccozzi, M.; Denaro, V. Epidemiology of Anterior Cruciate Ligament Reconstruction Surgery in Italy: A 15-Year Nationwide Registry Study. J. Clin. Med. 2021, 10, 223. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Varela-Olalla, D. The Validity and Reliability of the My Jump Lab App for the Measurement of Vertical Jump Performance Using Artificial Intelligence. Sensors 2024, 24, 7897. [Google Scholar] [CrossRef]
- Stafylidis, A.; Michailidis, Y.; Mandroukas, A.; Metaxas, I.; Chatzinikolaou, K.; Stafylidis, C.; Papadopoulou, S.D.; Metaxas, T.I. Validity and Reliability of the MyJump 2 Application for Measuring Vertical Jump in Youth Soccer Players Across Age Groups. Appl. Sci. 2025, 15, 6253. [Google Scholar] [CrossRef]
- Puljić, D.; Karavas, C.; Mandroukas, A.; Stafylidis, A. Validity of the Enode Sensor and My Jump 3 App for Assessing Countermovement Jump Performance. Appl. Sci. 2024, 14, 11989. [Google Scholar] [CrossRef]
- Bogataj, Š.; Pajek, M.; Andrašić, S.; Trajković, N. Concurrent Validity and Reliability of My Jump 2 App for Measuring Vertical Jump Height in Recreationally Active Adults. Appl. Sci. 2020, 10, 3805. [Google Scholar] [CrossRef]
- Holman, M.E.; Harnish, C.R. Reliability and Validity of the Jumpster Accelerometer-Based App Compared to the Vertec When Completing a Countermovement Jump: An Examination of Field-Accessible Tools. Appl. Sci. 2025, 15, 7768. [Google Scholar] [CrossRef]
- Watkins, C.M.; Maunder, E.; Tillaar, R.V.D.; Oranchuk, D.J. Concurrent Validity and Reliability of Three Ultra-Portable Vertical Jump Assessment Technologies. Sensors 2020, 20, 7240. [Google Scholar] [CrossRef]
- Aleksic, J.; Kanevsky, D.; Mesaroš, D.; Knezevic, O.M.; Cabarkapa, D.; Bozovic, B.; Mirkov, D.M. Validation of Automated Countermovement Vertical Jump Analysis: Markerless Pose Estimation vs. 3D Marker-Based Motion Capture System. Sensors 2024, 24, 6624. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Kuchciak, M.; Bril, G.; Mika, A.; Przydział, M.; Pazdan-Śliż, I.; Kielnar, R.; Racheniuk, H.; Adamska, O.; Deszczyński, M. Intra-Rater and Test–Retest Reliability of Barbell Force, Velocity, and Power during the Landmine Punch Throw Test Assessed by the GymAware Linear Transducer System. Appl. Sci. 2023, 13, 10875. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Wang, T.; Wang, L. Influence of Structural Configurations on the Shear Fatigue Damage of the Blade Trailing-Edge Adhesive Joint. Appl. Sci. 2020, 10, 2715. [Google Scholar] [CrossRef]
- Ribeiro Neto, F.; Dorneles, J.R.; Luna, R.M.; Spina, M.A.; Gonçalves, C.W.; Gomes Costa, R.R. Performance Differences Between the Arched and Flat Bench Press in Beginner and Experienced Paralympic Powerlifters. J. Strength Cond. Res. 2022, 36, 1936–1943. [Google Scholar] [CrossRef]
- Muñoz-López, A.; Marín-Galindo, A.; Corral-Pérez, J.; Costilla, M.; Sánchez-Sixto, A.; Sañudo, B.; Casals, C.; Ponce-González, J.G. Effects of Different Velocity Loss Thresholds on Passive Contractile Properties and Muscle Oxygenation in the Squat Exercise Using Free Weights. J. Strength Cond. Res. 2022, 36, 3056–3064. [Google Scholar] [CrossRef]
- Nguyen, L.; Nguyen, D.K.; Nguyen, T.; Nguyen, B.; Nghiem, T.X. Analysis of Microalgal Density Estimation by Using LASSO and Image Texture Features. Sensors 2023, 23, 2543. [Google Scholar] [CrossRef]
- Jakše, B.; Lipošek, S.; Zenić, N.; Šajber, D. Olympic Cycle Comparison of the Nutritional and Cardiovascular Health Status of an Elite-Level Female Swimmer: Case Study Report from Slovenia. Sports 2022, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Yu, S.-G.; Kim, S.-E.; Lee, E.C. Non-Contact Oxygen Saturation Measurement Using YCgCr Color Space with an RGB Camera. Sensors 2021, 21, 6120. [Google Scholar] [CrossRef] [PubMed]
- Fonta, M.; Tsepis, E.; Fousekis, K.; Mandalidis, D. Acute Effects of Static Self-Stretching Exercises and Foam Roller Self-Massaging on the Trunk Range of Motions and Strength of the Trunk Extensors. Sports 2021, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Wagner, T.; Langhals, B. Biomechanical and Psychological Predictors of Failure in the Air Force Physical Fitness Test. Sports 2022, 10, 54. [Google Scholar] [CrossRef]
- Lobo, P.; Morais, P.; Murray, P.; Vilaça, J.L. Trends and Innovations in Wearable Technology for Motor Rehabilitation, Prediction, and Monitoring: A Comprehensive Review. Sensors 2024, 24, 7973. [Google Scholar] [CrossRef]
- Lewis, N.L. The use of the Lewis formula in predicting the anaerobic power of athletes. J. Sports Med. Phys. Fit. 1974, 14, 189–195. [Google Scholar]
- Mateus, N.; Abade, E.; Coutinho, D.; Gómez, M.-Á.; Peñas, C.L.; Sampaio, J. Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management. Sensors 2025, 25, 139. [Google Scholar] [CrossRef]
- Mercadal-Baudart, C.; Liu, C.J.; Farrell, G.; Boyne, M.; González Escribano, J.; Smolic, A.; Simms, C. Exercise quantification from single camera view markerless 3D pose estimation. Heliyon 2024, 10, e27596. [Google Scholar] [CrossRef]
- Giraldo-Zuluaga, J.-H.; Diez, G.; Gomez, A.; Martinez, T.; Peñuela Vasquez, M.; Vargas Bonilla, J.F.; Salazar, A. Automatic Identification of Scenedesmus Polymorphic Microalgae from Microscopic Images. arXiv 2016, arXiv:1612.07379. [Google Scholar] [CrossRef]
- Ali, M.; Yaseen, M.; Ali, S.; Kim, H.-C. Deep Learning-Based Approach for Microscopic Algae Classification with Grad-CAM Interpretability. Electronics 2025, 14, 442. [Google Scholar] [CrossRef]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Ten Hove, D.T.; Jorgensen, T.D.; van der Ark, L.A. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Psychol. Methods 2022, 29, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Coswig, V.; Silva, A.; Barbalho, M.; Faria, F.; Nogueira, C.; Borges, M.; Buratti, J.; Vieira, I.; Román, F.J.L.; Gorla, J.I. Assessing the Validity of the MyJump2 App for Measuring Different Jumps in Professional Cerebral Palsy Football Players: An Experimental Study. JMIR mHealth Uhealth 2019, 7, e11099. [Google Scholar] [CrossRef]
- Thome, M.; Thorpe, R.T.; Jordan, M.J.; Nimphius, S. Validity of Global Positioning System Technology to Measure Maximum Velocity Sprinting in Elite Sprinters. J. Strength Cond. Res. 2023, 37, 2438–2442. [Google Scholar] [CrossRef]
- Johnston, K.; Wattie, N.; Schorer, J.; Baker, J. Talent Identification in Sport: A Systematic Review. Sports Med. 2018, 48, 97–109. [Google Scholar] [CrossRef]
- Tan, E.C.H.; Weng Onn, S.; Montalvo, S. Measuring Vertical Jump Height with Artificial Intelligence Through a Cell Phone: A Validity and Reliability Report. J. Strength Cond. Res. 2024, 38, e529–e533. [Google Scholar] [CrossRef]
Measurement Type | DeepSport (Mean ± SD) | OptoJump (Mean ± SD) |
---|---|---|
CMJ Height (cm) | 42.3 ± 4.8 | 42.7 ± 4.9 |
SJ Height (cm) | 38.7 ± 4.2 | 39.1 ± 4.3 |
Variables | Device | ICC (95% CI) | CV (%) | SEM | SDC |
---|---|---|---|---|---|
CMJ (cm) | DeepSport | 0.90 (0.674–0.970) | 4.86 | 0.078 | 0.216 |
OptoJump | 0.90 (0.680–0.974) | 4.36 | 0.081 | 0.224 | |
CMJ Anaerobic Power (W) | DeepSport | 0.91 (0.712–0.986) | 4.95 | 0.061 | 0.169 |
OptoJump | 0.90 (0.693–0.972) | 4.79 | 0.065 | 0.180 | |
SJ (cm) | DeepSport | 0.90 (0.682–0.979) | 2.64 | 0.083 | 0.230 |
OptoJump | 0.90 (0.677–0.975) | 2.12 | 0.080 | 0.221 | |
SJ Anaerobic Power (W) | DeepSport | 0.90 (0.708–0.983) | 4.60 | 0.059 | 0.163 |
OptoJump | 0.91 (0.710–0.986) | 4.27 | 0.062 | 0.171 |
Measurement | Device | n | SD | t | p | |
---|---|---|---|---|---|---|
CMJ (cm) | DeepSport | 12 | 40.58 | 1.975 | −0.248 | 0.809 |
OptoJump | 12 | 40.66 | 1.775 | |||
CMJ Anaerobic Power (W) | DeepSport | 12 | 832.61 | 91.176 | −0.254 | 0.804 |
OptoJump | 12 | 833.43 | 90.010 | |||
SJ (cm) | DeepSport | 12 | 41.75 | 1.959 | 2.057 | 0.064 |
OptoJump | 12 | 40.91 | 1.083 | |||
SJ Anaerobic Power (W) | DeepSport | 12 | 844.11 | 89.555 | 1.924 | 0.081 |
OptoJump | 12 | 835.70 | 85.877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydemir, B.; Aydoğan, M.T.; Boz, E.; Kul, M.; Kırkbir, F.; Özkara, A.B. Validity and Reliability of a Novel AI-Based System in Athletic Performance Assessment: The Case of DeepSport. Sensors 2025, 25, 5580. https://doi.org/10.3390/s25175580
Aydemir B, Aydoğan MT, Boz E, Kul M, Kırkbir F, Özkara AB. Validity and Reliability of a Novel AI-Based System in Athletic Performance Assessment: The Case of DeepSport. Sensors. 2025; 25(17):5580. https://doi.org/10.3390/s25175580
Chicago/Turabian StyleAydemir, Burakhan, Muhammed Talha Aydoğan, Emre Boz, Murat Kul, Fatih Kırkbir, and Abdullah Bora Özkara. 2025. "Validity and Reliability of a Novel AI-Based System in Athletic Performance Assessment: The Case of DeepSport" Sensors 25, no. 17: 5580. https://doi.org/10.3390/s25175580
APA StyleAydemir, B., Aydoğan, M. T., Boz, E., Kul, M., Kırkbir, F., & Özkara, A. B. (2025). Validity and Reliability of a Novel AI-Based System in Athletic Performance Assessment: The Case of DeepSport. Sensors, 25(17), 5580. https://doi.org/10.3390/s25175580