Limited Interchangeability of Smartwatches and Lace-Mounted IMUs for Running Gait Analysis
Abstract
1. Introduction
2. Materials and Methods
Data Analysis
3. Results
n | Device | Average (SD) | MAE | MAPE | r | CCC | Deming Intercept/Slope | ||
---|---|---|---|---|---|---|---|---|---|
Overall | * AC (step /min) | 191 | Lace-mounted IMU | 169.1 (13.3) | — | — | — | — | — |
192 | Smartwatch | 162.8 (16.2) | 6.8 | 4.1% | 0.74 | 0.66 | −72.4/1.39 | ||
PC (step /min) | 191 | Lace-mounted IMU | 198.7 (25.0) | — | — | — | — | — | |
190 | Smartwatch | 178.7 (15.9) | 20.5 | 9.5% | 0.45 | 0.29 | 95.2/0.42 | ||
SL (m) | 190 | Lace-mounted IMU | 2.12 (0.39) | — | — | — | — | — | |
190 | Smartwatch | 1.90 (0.28) | 0.32 | 14.4% | 0.51 | 0.39 | 0.86/0.49 | ||
GCT (ms) | 191 | Lace-mounted IMU | 318.1 (69.9) | — | — | — | — | — | |
190 | Smartwatch | 254.5 (32.1) | 66.6 | 19.0% | 0.67 | 0.30 | 143.59/0.35 | ||
Female | AC (step /min) | 86 | Lace-mounted IMU | 168.3 (13.9) | — | — | — | — | — |
88 | Smartwatch | 161.4 (17.6) | 7.7 | 4.6% | 0.65 | 0.58 | −92.7/1.51 | ||
PC (step /min) | 86 | Lace-mounted IMU | 197.3 (23.5) | — | — | — | — | — | |
87 | Smartwatch | 178.4 (12.2) | 18.3 | 8.6% | 0.43 | 0.25 | 116.8/0.32 | ||
SL (m) | 86 | Lace-mounted IMU | 1.99 (0.32) | — | — | — | — | — | |
87 | Smartwatch | 1.86 (0.28) | 0.28 | 13.4% | 0.34 | 0.31 | 0.57/0.65 | ||
GCT (ms) | 86 | Lace-mounted IMU | 330.2 (74.3) | — | — | — | — | — | |
87 | Smartwatch | 255.8 (30.6) | 78.3 | 21.4% | 0.61 | 0.23 | 159.3/0.29 | ||
* AC (step /min) | 102 | Lace-mounted IMU | 169.5 (12.8) | — | — | — | — | — | |
Male | 101 | Smartwatch | 163.6 (15.4) | 6.1 | 3.7% | 0.82 | 0.74 | -57.0/1.3 | |
PC (step /min) | 102 | Lace-mounted IMU | 198.9 (25.4) | — | — | — | — | — | |
100 | Smartwatch | 178.8 (18.7) | 21.4 | 9.9% | 0.47 | 0.33 | 70.0/0.55 | ||
SL (m) | 101 | Lace-mounted IMU | 2.25 (0.40) | — | — | — | — | — | |
100 | Smartwatch | 1.95 (0.27) | 0.36 | 15.5% | 0.57 | 0.37 | 0.92/0.46 | ||
GCT (ms) | 102 | Lace-mounted IMU | 307.4 (65.5) | — | — | — | — | — | |
100 | Smartwatch | 252.5 (33.7) | 57.4 | 17.1% | 0.74 | 0.37 | 125.0/0.41 |
n | Device | Average (SD) | MAE | MAPE | r | CCC | Deming Intercept/Slope | ||
---|---|---|---|---|---|---|---|---|---|
Short Distance | AC (step /min) | 143 | Lace-mounted IMU | 169.1 (13.7) | — | — | — | — | — |
143 | Smartwatch | 162.2 (17.3) | 7.6 | 4.5% | 0.71 | 0.63 | −74.17/1.4 | ||
PC (step /min) | 143 | Lace-mounted IMU | 199.6 (25.1) | — | — | — | — | — | |
141 | Smartwatch | 179.2 (16.6) | 21.5 | 9.9% | 0.46 | 0.30 | 88.32/0.46 | ||
SL (m) | 142 | Lace-mounted IMU | 2.13 (0.39) | — | — | — | — | — | |
141 | Smartwatch | 1.90 (0.28) | 0.3 | 14.8% | 0.46 | 0.36 | 0.9/0.47 | ||
GCT (ms) | 143 | Lace-mounted IMU | 319.6 (73.0) | — | — | — | — | — | |
141 | Smartwatch | 254.5 (33.1) | 68.3 | 19.3% | 0.69 | 0.3 | 142.09/0.35 | ||
Long Distance | * AC (step /min) | 25 | Lace-mounted IMU | 167.7 (12.1) | — | — | — | — | — |
26 | Smartwatch | 163.1 (14.8) | 4.2 | 2.5% | 0.83 | 0.78 | −44.9/1.24 | ||
PC (step /min) | 25 | Lace-mounted IMU | 194.5 (22.9) | — | — | — | — | — | |
26 | Smartwatch | 178.2 (14.7) | 15.2 | 7.2% | 0.41 | 0.29 | 77.12/0.52 | ||
SL (m) | 25 | Lace-mounted IMU | 2.14 (0.41) | — | — | — | — | — | |
26 | Smartwatch | 1.92 (0.30) | 0.3 | 14.7% | 0.54 | 0.37 | 1.15/0.37 | ||
GCT (ms) | 25 | Lace-mounted IMU | 315.8 (68.0) | — | — | — | — | — | |
26 | Smartwatch | 246.5 (26.0) | 68.5 | 19.4% | 0.55 | 0.18 | 182.82/0.2 |
n | Device | Average (SD) | MAE | MAPE | r | CCC | Deming Intercept/Slope | ||
---|---|---|---|---|---|---|---|---|---|
Indoor | AC (step /min) | 100 | Lace-mounted IMU | 168.2 (13.0) | — | — | — | — | — |
99 | Smartwatch | 162.0 (17.6) | 6.5 | 3.9% | 0.67 | 0.6 | −105.97/1.6 | ||
PC (step /min) | 100 | Lace-mounted IMU | 195.9 (22.2) | — | — | — | — | — | |
97 | Smartwatch | 176.6 (12.1) | 19.2 | 9.1% | 0.44 | 0.24 | 115.47/0.31 | ||
SL (m) | 99 | Lace-mounted IMU | 2.11 (0.35) | — | — | — | — | — | |
97 | Smartwatch | 1.86 (0.27) | 0.3 | 13.1% | 0.5 | 0.36 | 0.83/0.5 | ||
GCT (ms) | 100 | Lace-mounted IMU | 321.2 (69.6) | — | — | — | — | — | |
97 | Smartwatch | 257.0 (33.0) | 67.8 | 19.0% | 0.63 | 0.28 | 148.4/0.34 | ||
Outdoor | * AC (step /min) | 86 | Lace-mounted IMU | 170.3 (13.6) | — | — | — | — | — |
87 | Smartwatch | 163.6 (15.2) | 7.0 | 4.1% | 0.82 | 0.74 | −35.06/1.17 | ||
PC (step /min) | 86 | Lace-mounted IMU | 201.5 (27.0) | — | — | — | — | — | |
87 | Smartwatch | 181.2 (19.2) | 21.4 | 9.8% | 0.44 | 0.32 | 75.03/0.53 | ||
SL (m) | 86 | Lace-mounted IMU | 2.15 (0.43) | — | — | — | — | — | |
87 | Smartwatch | 1.97 (0.27) | 0.3 | 15.8% | 0.47 | 0.37 | 1.05/0.42 | ||
GCT (ms) | 86 | Lace-mounted IMU | 312.7 (69.9) | — | — | — | — | — | |
87 | Smartwatch | 251.1 (29.8) | 64.4 | 18.7% | 0.70 | 0.30 | 147.24/0.33 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
SL | stride length |
GCT | ground contact time |
IMU | inertial measurement unit |
MAPE | mean absolute percent error |
GPS | global positioning system |
MAE | mean absolute error |
CCC | Lin’s Concordance Correlation Coefficient |
Appendix A
References
- DeJong Lempke, A.F.; Audet, A.P.; Wasserman, M.G.; Melvin, A.C.; Soldes, K.; Heithoff, E.; Shah, S.; Kozloff, K.M.; Lepley, A.S. Biomechanical differences and variability during sustained motorized treadmill running versus outdoor overground running using wearable sensors. J. Biomech. 2025, 178, 112443. [Google Scholar] [CrossRef]
- Hollis, C.R.; Koldenhoven, R.M.; Resch, J.E.; Hertel, J. Running biomechanics as measured by wearable sensors: Effects of speed and surface. Sports Biomech. 2021, 20, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Landers, G.J.; Blanksby, B.A.; Rackland, T. Cadence, Stride Rate and Stride Length during Triathlon Competition. Int. J. Exerc. Sci. 2011, 4, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Pozzi, F.; Willy, R.W.; Carrol, A.; Zeni, J. Altering Cadence or Vertical Oscillation during Running: Effects on Running Related Injury Factors. Int. J. Sports Phys. Ther. 2018, 13, 633–642. [Google Scholar] [CrossRef]
- Saunders, P.U.; Pyne, D.B.; Telford, R.D.; Hawley, J.A. Factors affecting running economy in trained distance runners. Sports Med. 2004, 34, 465–485. [Google Scholar] [CrossRef]
- Bredeweg, S.W.; Kluitenberg, B.; Bessem, B.; Buist, I. Differences in kinetic variables between injured and noninjured novice runners: A prospective cohort study. J. Sci. Med. Sport 2013, 16, 205–210. [Google Scholar] [CrossRef]
- Ceyssens, L.; Vanelderen, R.; Barton, C.; Malliaras, P.; Dingenen, B. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sports Med. 2019, 49, 1095–1115. [Google Scholar] [CrossRef] [PubMed]
- DeJong Lempke, A.F.; Hart, J.M.; Hryvniak, D.J.; Rodu, J.S.; Hertel, J. Use of wearable sensors to identify biomechanical alterations in runners with Exercise-Related lower leg pain. J. Biomech. 2021, 126, 110646. [Google Scholar] [CrossRef]
- DeJong Lempke, A.F.; Whitney, K.E.; Collins, S.E.; d’Hemecourt, P.A.; Meehan Iii, W.P. Biomechanical running gait assessments across prevalent adolescent musculoskeletal injuries. Gait Posture 2022, 96, 123–129. [Google Scholar] [CrossRef]
- Malisoux, L.; Gette, P.; Delattre, N.; Urhausen, A.; Theisen, D. Spatiotemporal and Ground-Reaction Force Characteristics as Risk Factors for Running-Related Injury: A Secondary Analysis of a Randomized Trial Including 800+ Recreational Runners. Am. J. Sports Med. 2022, 50, 537–544. [Google Scholar] [CrossRef]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- Koldenhoven, R.M.; Hertel, J. Validation of a Wearable Sensor for Measuring Running Biomechanics. Digit. Biomark. 2018, 2, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Rafales-Perucha, A.; Bravo-Vinuales, E.; Molina-Molina, A.; Carton-Llorente, A.; Cardiel-Sanchez, S.; Roche-Seruendo, L.E. Concurrent Validity and Relative Reliability of the RunScribe System for the Assessment of Spatiotemporal Gait Parameters During Walking. Sensors 2024, 24, 7825. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pinillos, F.; Latorre-Roman, P.A.; Ramirez-Campillo, R.; Parraga-Montilla, J.A.; Roche-Seruendo, L.E. How does the slope gradient affect spatiotemporal parameters during running? Influence of athletic level and vertical and leg stiffness. Gait Posture 2019, 68, 72–77. [Google Scholar] [CrossRef]
- Lewin, M.; Price, C.; Nester, C. Validation of the RunScribe inertial measurement unit for walking gait measurement. PLoS ONE 2022, 17, e0273308. [Google Scholar] [CrossRef]
- DeJong Lempke, A.F.; Stephens, S.L.; Fish, P.N.; Thompson, X.D.; Hart, J.M.; Hryvniak, D.J.; Rodu, J.S.; Hertel, J. Sensor-based gait training to reduce contact time for runners with exercise-related lower leg pain: A randomised controlled trial. BMJ Open Sport Exerc. Med. 2022, 8, e001293. [Google Scholar] [CrossRef]
- Bailey, C.A.; Mir-Orefice, A.; Uchida, T.K.; Nantel, J.; Graham, R.B. Smartwatch-Based Prediction of Single-Stride and Stride-to-Stride Gait Outcomes Using Regression-Based Machine Learning. Ann. Biomed. Eng. 2023, 51, 2504–2517. [Google Scholar] [CrossRef]
- Erdem, N.S.; Ersoy, C.; Tunca, C. Gait Analysis Using Smartwatches. In Proceedings of the 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), Istanbul, Turkey, 8 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Adams, D.; Pozzi, F.; Carroll, A.; Rombach, A.; Zeni, J., Jr. Validity and Reliability of a Commercial Fitness Watch for Measuring Running Dynamics. J. Orthop. Sports Phys. Ther. 2016, 46, 471–476. [Google Scholar] [CrossRef]
- Pirscoveanu, C.I.; Oliveira, A.S. Sensitiveness of Variables Extracted from a Fitness Smartwatch to Detect Changes in Vertical Impact Loading during Outdoors Running. Sensors 2023, 23, 2928. [Google Scholar] [CrossRef]
- Borg, G.A.V. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exer. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Apple Inc. Developer Documentation. Available online: https://developer.apple.com/documentation/healthkit/hkquantitytypeidentifier/walkingsteplength (accessed on 28 August 2025).
- RunScribe Metrics Documentation. Available online: https://runscribe.com/metrics/ (accessed on 28 August 2025).
- Apple Inc. Apple Watch Support. Available online: https://support.apple.com/guide/watch/workout-views-and-running-metrics-apd1f24d4d35/watchos (accessed on 28 August 2025).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.M.; Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Bai, Y.; Welk, G.J. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med. Sci. Sports Exerc. 2018, 50, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Welk, G.J.; McClain, J.; Ainsworth, B.E. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med. Sci. Sports Exerc. 2012, 44, S39–S49. [Google Scholar] [CrossRef]
- O’Brien, M.W. Implications and Recommendations for Equivalence Testing in Measures of Movement Behaviors: A Scoping Review. J. Meas. Phys. Behav. 2021, 4, 353–362. [Google Scholar] [CrossRef]
- Heiderscheit, B.C.; Chumanov, E.S.; Michalski, M.P.; Wille, C.M.; Ryan, M.B. Effects of Step Rate Manipulation on Joint Mechanics during Running. Med. Sci. Sports Exer. 2011, 43, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.M.; Martin, J.F.; Barton, C.J.; Bonanno, D.R. What is the Effect of Changing Running Step Rate on Injury, Performance and Biomechanics? A Systematic Review and Meta-analysis. Sports Med. Open 2022, 8, 112. [Google Scholar] [CrossRef]
- Carrier, B.; Barrios, B.; Jolley, B.D.; Navalta, J.W. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review. Technologies 2020, 8, 70. [Google Scholar] [CrossRef]
- Apple Watch Support Page. Available online: https://support.apple.com/en-us/105048 (accessed on 28 August 2025).
- Tan, H.; Wilson, A.M.; Lowe, J. Measurement of stride parameters using a wearable GPS and inertial measurement unit. J. Biomech. 2008, 41, 1398–1406. [Google Scholar] [CrossRef]
- Ferber, R.; Davis, I.M.; Williams, D.S., 3rd. Gender differences in lower extremity mechanics during running. Clin. Biomech. 2003, 18, 350–357. [Google Scholar] [CrossRef]
- Xie, P.P.; Istvan, B.; Liang, M. Sex-specific differences in biomechanics among runners: A systematic review with meta-analysis. Front. Physiol. 2022, 13, 994076. [Google Scholar] [CrossRef]
- Bruening, D.A.; Frimenko, R.E.; Goodyear, C.D.; Bowden, D.R.; Fullenkamp, A.M. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 2015, 41, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Brayne, L.; Barnes, A.; Heller, B.; Wheat, J. Using a wireless consumer accelerometer to measure tibial acceleration during running: Agreement with a skin-mounted sensor. Sports Eng. 2018, 21, 487–491. [Google Scholar] [CrossRef]
- Carrier, B.; Creer, A.; Williams, L.R.; Holmes, T.M.; Jolley, B.D.; Dahl, S.; Weber, E.; Standifird, T. Validation of Garmin Fenix 3 HR Fitness Tracker Biomechanics and Metabolics (VO2max). J. Meas. Phys. Behav. 2020, 3, 331–337. [Google Scholar] [CrossRef]
- Dames, K.D.; Smith, J.D.; Heise, G.D. Averaging Trials Versus Averaging Trial Peaks: Impact on Study Outcomes. J. Appl. Biomech. 2017, 33, 233–236. [Google Scholar] [CrossRef]
- Niswander, W.; Wang, W.; Kontson, K. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Sensors 2020, 20, 5993. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, M.; Gradl, S.; Jensen, U.; Ullrich, M.; Eskofier, B.M. Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units. Sensors 2018, 18, 4194. [Google Scholar] [CrossRef]
- Prisco, G.; Pirozzi, M.A.; Santone, A.; Esposito, F.; Cesarelli, M.; Amato, F.; Donisi, L. Validity of Wearable Inertial Sensors for Gait Analysis: A Systematic Review. Diagnostics 2025, 15, 36. [Google Scholar] [CrossRef]
- Davis, J.J., IV; Meardon, S.A.; Brown, A.W.; Raglin, J.S.; Harezlak, J.; Gruber, A.H. Are Gait Patterns during In-Lab Running Representative of Gait Patterns during Real-World Training? An Experimental Study. Sensors 2024, 24, 2892. [Google Scholar] [CrossRef] [PubMed]
- Hebenstreit, F.; Leibold, A.; Krinner, S.; Welsch, G.; Lochmann, M.; Eskofier, B.M. Effect of walking speed on gait sub phase durations. Hum. Mov. Sci. 2015, 43, 118–124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meingast, T.; Carrier, B.; Melvin, A.; Kozloff, K.M.; DeJong Lempke, A.F.; Lepley, A.S. Limited Interchangeability of Smartwatches and Lace-Mounted IMUs for Running Gait Analysis. Sensors 2025, 25, 5553. https://doi.org/10.3390/s25175553
Meingast T, Carrier B, Melvin A, Kozloff KM, DeJong Lempke AF, Lepley AS. Limited Interchangeability of Smartwatches and Lace-Mounted IMUs for Running Gait Analysis. Sensors. 2025; 25(17):5553. https://doi.org/10.3390/s25175553
Chicago/Turabian StyleMeingast, Theodor, Bryson Carrier, Amanda Melvin, Kenneth M. Kozloff, Alexandra F. DeJong Lempke, and Adam S. Lepley. 2025. "Limited Interchangeability of Smartwatches and Lace-Mounted IMUs for Running Gait Analysis" Sensors 25, no. 17: 5553. https://doi.org/10.3390/s25175553
APA StyleMeingast, T., Carrier, B., Melvin, A., Kozloff, K. M., DeJong Lempke, A. F., & Lepley, A. S. (2025). Limited Interchangeability of Smartwatches and Lace-Mounted IMUs for Running Gait Analysis. Sensors, 25(17), 5553. https://doi.org/10.3390/s25175553