Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects
Abstract
Highlights
- Advanced materials (MOFs, COFs, quantum dots) enhance electrochemical sensors’ sensitivity, selectivity, and detection limits for antibiotics.
- Wearable sensors enable real-time antibiotic monitoring in clinical/food safety via smartphone integration.
- Enhanced materials improve rapid, low-cost detection of antibiotic residues in environment/food.
- Wearable/smartphone-integrated sensors revolutionize on-site monitoring, reducing human exposure risks.
Abstract
1. Introduction
2. The Basic Principle of Electrochemical Sensors
3. Materials for the Construction of Antibiotic Electrochemical Sensors
3.1. Carbon Nanomaterials
Modifier | Electrode | Technique | Liner Range (µM) | LOD (µM) | Analytes | Sample | Ref. |
---|---|---|---|---|---|---|---|
Carbon nanomaterials | Z-800/rGO/GCE | DPV | 1~180 | 0.25 | Chloramphenicol | Milk, honey | [42] |
Perlberg/GCE | DPV | 5~225 | 2.2 | Tetracycline | Urine | [43] | |
Fe3O4/MWCNT/CPE | DPV | 0.3~100 | 0.09 | Enrofloxacin | Milk, egg, honey, chicken | [44] | |
CDs-Ag@Cu2O-GA/GCE | DPV | 10~110 | 0.71 | Metronidazole | Milk | [45] | |
3DCNTs@CuNPs@MIP | CV | 10~500 | 10 | Chloramphenicol | Milk | [46] | |
VS2/Ti3C2Tx MXene-SPCE | LSV | 0.01~400 | 0.0047 | Nitrofurantoin | Lake, milk, honey | [47] | |
GO-MXene-PDDA/SPCE | CV | 0.04~200 | 0.00122 | Furazolidone | Piped water, river water | [48] | |
OMC@Ti3C2 MXene/Apt/SPCE | DPV | 0.010~2 | 0.00351 | Kanamycin | Aminoglycoside antibiotics | [49] | |
Metal and metal components nanomaterials | SbFE/GCE | SWASV | 0.40~3.00 | 0.15 | Tetracycline | Honey | [50] |
Ni/MoN/MCGCE | DPV | 5~150 | 0.008 | Tinidazole | Tablet | [51] | |
TCN@Au NPs/GCE | EIS | 0.5~3 | 0.2 | Amoxicillin | Wastewater | [52] | |
AuNPs/PdNPs/ErGO/GCE | SWV | 30~350 | 9 | Lomefloxacin and amoxicillin | Milk | [36] | |
LaFeO3/rGO/GCE | DPV | 0.2~1221 | 0.048 | Metronidazole | Urine, milk | [53] | |
Molecular imprinted polymers | Hydrophilic MIPs-GMA/GCE | CV | 0.028~2.8 | 2.2 × 10−3 | Tetracycline | Egg | [54] |
MWCNTs@MIP/CKM-3/P-r-GO/GCE | DPV | 5.0 × 10−3~4.0 | 1.0 × 10−4 | Chloramphenicol | Milk, honey | [55] | |
EMIP/GNU/GO/GCE | DPV | 20.0~950 | 7.1 | Cefixime | Serum, urine | [56] | |
Ery-MIP/SPE | DPV | 1.2 × 10−4 ~4.0 × 10−4 | 1 × 10−4 | Erythromycin | Tap water | [37] | |
Covalent organic framework | AuNPs@COFs-MWCNTs/GCE | DPV | 0.08~25 | 0.016 | Doxorubicin | Human serum, cell lysate | [57] |
TAPB-PDA-COFs/AuNPs/GCE | SWV | 0.05~10, 10~120 | 0.041 | Enrofloxacin | Water, milk | [58] | |
MIP/CuS/Au@COF/GCE | DPV | 1.0 × 10−5 ~100 | 4.3 × 10−6 | Sulfathiazole | Mutton, fodder | [59] | |
MIP/MoS2/NH2-MWCNT@COF/GCE | DPV | 0.30~200 | 0.11 | Sulfamerazine | Pork, chicken | [60] | |
COF@NH2-CNT/GCE | DPV | 0.2~100 | 0.0775 | Furazolidone | Beef, pork | [61] | |
Biofunctional materials | UiO-66-NH2@Mn+/cDNA MB@Apt1-Apt2 capture probes | SWV | 2 × 10−6~0.1 | 1.6 × 10−7 | Kanamycin | Milk | [62] |
PEI/TetX2/NPGCE | CV | 0.5~5 | 0.018 | Tetracycline | Milk | [63] | |
SPdCEs | I-t | 1.92 × 10−3 ~0.454 | 3.9 × 10−4 | Sulfapyridine | Milk | [64] | |
Quantum dots | QDs-P6LC-PEDOT:PSS/GCE | SWV | 0.90~69.0 | 0.05 | Amoxicillin | Milk, synthetic urine | [65] |
CdTe-CB-CTS: EPH/GCE | SWAdASV | 0.2~7.4 | 6.6 × 10−3 | Norfloxacin | Chitosan film | [66] | |
Magnetic and aptamer-QDs EDP | SWV | 3 × 10−4~0.93 | 9.3 × 10−5 | Chloramphenicol | Fish | [67] |
3.2. Metal and Metal Component Nanomaterials
3.3. Molecular Imprinted Polymers
3.4. Covalent Organic Frameworks
3.5. Biological Materials
3.6. Quantum Dots
4. Application
4.1. Clinical Diagnostics
4.2. Food Safety
4.3. Environmental Monitoring
4.4. Pharmaceutical Analysis
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, L.; Mao, S.; Chen, F.; Zhao, S.; Su, W.; Lai, G.; Yu, A.; Lin, C.-T. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021). Chemosphere 2022, 297, 134127. [Google Scholar] [CrossRef]
- Mcmanus, P.S.; Stockwell, V.O.; Sundin, G.W.; Jones, A.L. Antibiotic Use in Plant Agriculture. Annu. Rev. Phytopathol. 2002, 40, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, B.; Liu, M.; Mao, S. Demand, status, and prospect of antibiotics detection in the environment. Sens. Actuators B 2022, 369, 132383. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Lu, S.; Lin, C.; Lei, K.; Wang, B.; Xin, M.; Gu, X.; Cao, Y.; Liu, X.; Ouyang, W.; He, M. Occurrence, spatiotemporal variation, and ecological risk of antibiotics in the water of the semi-enclosed urbanized Jiaozhou Bay in eastern China. Water Res. 2020, 184, 116187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-J.; Li, J.; Zhang, Y.; Kong, L.; Jin, M.; Yang, X.; Wu, Q.L. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China. Ecotoxicol. Environ. Saf. 2019, 183, 109511. [Google Scholar] [CrossRef]
- Ye, Z.; Weinberg, H.S.; Meyer, M.T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem. 2007, 79, 1135–1144. [Google Scholar] [CrossRef]
- Reverté, S.; Borrull, F.; Pocurull, E.; Maria Marcé, R. Determination of antibiotic compounds in water by solid-phase extraction–high-performance liquid chromatography–(electrospray) mass spectrometry. J. Chromatogr. A 2003, 1010, 225–232. [Google Scholar] [CrossRef]
- Sun, S.; Shen, J.; Li, D.; Li, B.; Sun, X.; Ma, L.; Qi, H. A new insight into the ARG association with antibiotics and non-antibiotic agents—Antibiotic resistance and toxicity. Environ. Pollut. 2022, 293, 118524. [Google Scholar] [CrossRef]
- Konstantinidis, T.; Tsigalou, C.; Karvelas, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines 2020, 8, 502. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Samanidou, V.; Michaelidou, K.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection. Food Chem. 2017, 224, 131–138. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, L.; Dou, Y.; Liu, X.; Song, S.; Jiang, H.; Fan, C. Electrochemical Biosensor for Point-of-Care Testing of Low-Abundance Biomarkers of Neurological Diseases. Anal. Chem. 2024, 96, 10332–10340. [Google Scholar] [CrossRef]
- Meng, S.; Mu, B.; Mao, S.; Li, Z. Dual-lanthanide functionalized hydrogen-bonded organic frameworks for fluorescent detection of quinolone antibiotics in multi-media. J. Hazard. Mater. 2025, 496, 139335. [Google Scholar] [CrossRef]
- Rong, M.; Huang, Y.; Lin, C.; Lai, L.; Wu, Y.; Niu, L. Recent advances in optical sensing for tetracycline antibiotics. TrAC Trends Anal. Chem. 2024, 178, 117839. [Google Scholar] [CrossRef]
- Li, X.; Miao, J.; Yin, Z.; Xu, X.; Shi, H. Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis. Molecules 2019, 24, 2198. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, Z.; Shi, Q.; Zhang, R.; Sun, A.; Zhao, J.; Wu, Y.; Shi, X. Rapid determination and risk evaluation of multi-class antibiotics in aquatic products by one-step purification process coupled with ultra-high performance liquid chromatography–tandem mass spectrometry. Talanta 2024, 277, 126421. [Google Scholar] [CrossRef] [PubMed]
- Sang, P.; Lu, G.; Yu, D.; Song, X.; Guo, Y.; Xie, Y.; Yao, W.; Qian, H.; Hu, Z. Simultaneous Determination of Antibiotics, Mycotoxins, and Hormones in Milk by an 8–17 DNAzyme-Based Enzyme-Linked Immunosorbent Assay. J. Agric. Food Chem. 2022, 70, 12681–12688. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, C.; Xiao, X.; Sun, Z.; Li, X.; Fu, L.; Karimi-Maleh, H.; Chen, J.; Lin, C.-T. Graphene-based electrochemical sensors for antibiotics: Sensing theories, synthetic methods, and on-site monitoring applications. Mater. Horiz. 2025, 12, 343–363. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, H.; Yu, Z.; Wang, M.; Wei, X.; Lu, Z.; Sun, L.; Ren, H.; Yang, W. Ratiometric electrochemical biosensor based on Cu(II) modified covalent organic framework for the ultra-sensitive and specific detection of glutathione. Chem. Eng. J. 2024, 492, 152271. [Google Scholar] [CrossRef]
- Ozcelikay, G.; Kurbanoglu, S.; Yarman, A.; Scheller, F.W.; Ozkan, S.A. Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin. Sens. Actuators B 2020, 320, 128285. [Google Scholar] [CrossRef]
- Abo El-Maali, N.; Osman, A.H.; Aly, A.A.M.; Al-Hazmi, G.A.A. Voltammetric analysis of Cu (II), Cd (II) and Zn (II) complexes and their cyclic voltammetry with several cephalosporin antibiotics. Bioelectrochemistry 2005, 65, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Lin, C.-H.; Wang, W.-S. Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy. Talanta 2009, 79, 62–67. [Google Scholar] [CrossRef]
- Zokhtareh, R.; Rahimnejad, M.; Najafpour-Darzi, G.; Karimi-Maleh, H. A new approach to electrochemical sensing of a wildly used antibiotic; ciprofloxacin. Measurement 2023, 215, 112872. [Google Scholar] [CrossRef]
- Zhong, Y.S.; Ni, Y.N.; Kokot, S. Application of differential pulse stripping voltammetry and chemometrics for the determination of three antibiotic drugs in food samples. Chin. Chem. Lett. 2012, 23, 339–342. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Jia, X.; Mao, J.; Wu, H.; Wang, S.; Guo, H. Molecularly imprinted electrochemical sensor for ultrasensitive determination of chloramphenicol in milk and egg samples. Food Chem. 2025, 489, 145024. [Google Scholar] [CrossRef]
- Wang, J.; Mahmoud, J.S. Determination of traces of streptomycin and related antibiotics by adsorptive stripping voltammetry. Anal. Chim. Acta 1986, 186, 31–38. [Google Scholar] [CrossRef]
- Maheshwaran, S.; Balaji, R.; Chen, S.-M.; Tamilalagan, E.; Chandrasekar, N.; Ethiraj, S.; Samuel, M.S. Construction of graphene oxide wrapped gadolinium vanadate nanocomposites as an efficient electrocatalyst for the amperometric sensing of sulfadiazine. Process Saf. Environ. Prot. 2022, 168, 77–87. [Google Scholar] [CrossRef]
- Motshakeri, M.; Sharma, M.; Phillips, A.R.J.; Kilmartin, P.A. Electrochemical Methods for the Analysis of Milk. J. Agric. Food Chem. 2022, 70, 2427–2449. [Google Scholar] [CrossRef]
- Pingarrón, J.M.; Labuda, J.; Barek, J.; Brett, C.M.A.; Camões, M.F.; Fojta, M.; Hibbert, D.B. Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019). Pure Appl. Chem. 2020, 92, 641–694. [Google Scholar] [CrossRef]
- Fysun, O.; Khorshid, S.; Rauschnabel, J.; Langowski, H.C. Detection of dairy fouling by cyclic voltammetry and square wave voltammetry. Food Sci. Nutr. 2020, 8, 3070–3080. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Cimpeanu, C.; Predoi, G. Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review. Open Chem. 2015, 13, 824–856. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, L.; Wen, Y.; Xu, J.; Duan, X.; Zhang, L.; Hu, D.; Nie, T. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal. Chim. Acta 2013, 787, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, L.; Liu, X.; Cheng, J.; Liu, W.; Liu, T.; Sun, M.; Zhao, L.; Ding, F.; Lu, Z.; et al. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole. Biosens. Bioelectron. 2019, 142, 111483. [Google Scholar] [CrossRef] [PubMed]
- Rajaji, U.; Muthumariappan, A.; Chen, S.-M.; Chen, T.-W.; Tseng, T.-W.; Wang, K.; Qi, D.; Jiang, J. Facile sonochemical synthesis of porous and hierarchical manganese(III) oxide tiny nanostructures for super sensitive electrocatalytic detection of antibiotic (chloramphenicol) in fresh milk. Ultrason. Sonochem. 2019, 58, 104648. [Google Scholar] [CrossRef]
- Kumar, N.; Rosy; Goyal, R.N. Gold-palladium nanoparticles aided electrochemically reduced graphene oxide sensor for the simultaneous estimation of lomefloxacin and amoxicillin. Sens. Actuators B 2017, 243, 658–668. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, S.P.; Kumar, P.; Khan, M.A.; Singh, S. Emerging electrochemical portable methodologies on carbon-based electrocatalyst for the determination of pharmaceutical and pest control pollutants: State of the art. J. Environ. Chem. Eng. 2023, 11, 109023. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.; Meng, T.; Guo, X.; Li, Q.; Yang, Y.; Jin, H.; Jin, C.; Meng, X.; Pang, H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem. 2024, 440, 138213. [Google Scholar] [CrossRef]
- Chi, H.; Liu, G. Carbon nanomaterial-based molecularly imprinted polymer sensors for detection of hazardous substances in food: Recent progress and future trends. Food Chem. 2023, 420, 136100. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.-Y.; Li, F. Flexible electrochemical sensors based on nanomaterials: Constructions, applications and prospects. Chem. Eng. J. 2025, 504, 158101. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchim. Acta 2019, 186, 191. [Google Scholar] [CrossRef] [PubMed]
- Kesavan, S.; Kumar, D.R.; Lee, Y.R.; Shim, J.-J. Determination of tetracycline in the presence of major interference in human urine samples using polymelamine/electrochemically reduced graphene oxide modified electrode. Sens. Actuators B 2017, 241, 455–465. [Google Scholar] [CrossRef]
- Azam Hosseini, F.; Khoshnood, R.S.; Ebrahimi, M.; Abedi, M.R. Fabrication of Carbon Paste Electrodes Modified with Multi-walled Carbon Nanotubes for the Potentiometric Determination of Chromium(III). J. Anal. Chem. 2020, 75, 951–957. [Google Scholar] [CrossRef]
- Aslam, H.K.; Bilal, S.; Mir, S.; Tabassum, S.; Gilani, M.A.; Yaqub, M.; Asim, M. A robust and simple non-enzymatic electrochemical sensor based on carbon dots-metal oxide composite for the detection of metronidazole traces in food products. Food Chem. 2024, 460, 140297. [Google Scholar] [CrossRef]
- Munawar, A.; Tahir, M.A.; Shaheen, A.; Lieberzeit, P.A.; Khan, W.S.; Bajwa, S.Z. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J. Hazard. Mater. 2018, 342, 96–106. [Google Scholar] [CrossRef]
- Liu, M.; Zhe, T.; Zhu, L.; Li, F.; Ma, K.; Xuan, C.; Feng, Q.; Ouyang, S.; Wang, L. Interfacial engineering of VS2/Ti3C2Tx MXene heterojunctions for portable electrochemical sensing of nitrofurantoin residues in food and water samples. Food Chem. 2025, 486, 144624. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Pan, K.; Qu, G.; Qin, J.; Lv, J.; Liang, Y. Self-assembly of GO-MXene hybrid composites by polyelectrolyte: As an efficient electrocatalyst for selective electrochemical detection of the antibiotic furazolidone. J. Environ. Chem. Eng. 2024, 12, 112319. [Google Scholar] [CrossRef]
- Yue, F.; Liu, M.; Bai, M.; Hu, M.; Li, F.; Guo, Y.; Vrublevsky, I.; Sun, X. Novel Electrochemical Aptasensor Based on Ordered Mesoporous Carbon/2D Ti3C2 MXene as Nanocarrier for Simultaneous Detection of Aminoglycoside Antibiotics in Milk. Biosensors 2022, 12, 626. [Google Scholar] [CrossRef]
- Krepper, G.; Pierini, G.D.; Pistonesi, M.F.; Di Nezio, M.S. “In-situ” antimony film electrode for the determination of tetracyclines in Argentinean honey samples. Sens. Actuators B 2017, 241, 560–566. [Google Scholar] [CrossRef]
- Niu, X.; Yang, J.; Ma, J.-F. Ni/MoN nanoparticles embedded with mesoporous carbon as a high-efficiency electrocatalyst for detection of nitroimidazole antibiotics. Sens. Actuators B 2023, 387, 133819. [Google Scholar] [CrossRef]
- Song, J. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor_ Fabrication, optimization, and mechanism. J. Hazard. Mater. 2020, 391, 122024. [Google Scholar] [CrossRef]
- Pandiyan, R.; Vinothkumar, V.; Chen, S.-M.; Sangili, A.; Kim, T.H. Integrated LaFeO3/rGO nanocomposite for the sensitive electrochemical detection of antibiotic drug metronidazole in urine and milk samples. Appl. Surf. Sci. 2023, 635, 157672. [Google Scholar] [CrossRef]
- Wang, P.; Fu, X.F.; Li, J.; Luo, J.; Zhao, X.Y.; Sun, M.J.; Shang, Y.Z.; Ye, C. Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition. Chin. Chem. Lett. 2011, 22, 611–614. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens. Bioelectron. 2015, 64, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Nasirizadeh, N.; Yazdanshenas, M.E. Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Biomater. Adv. 2019, 96, 654–660. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, K.; Zhang, C.; Ren, J.; Cui, M.; Li, N.; Ji, X.; Wang, R. Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin. Microchem. J. 2022, 182, 107865. [Google Scholar] [CrossRef]
- Lu, S.; Wang, S.; Wu, P.; Wang, D.; Yi, J.; Li, L.; Ding, P.; Pan, H. A composite prepared from covalent organic framework and gold nanoparticles for the electrochemical determination of enrofloxacin. Adv. Powder Technol. 2021, 32, 2106–2115. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, H.; Xu, L.; Waterhouse, G.I.N.; Zhang, H.; Qiao, X.; Xu, Z. Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification. Food Chem. 2020, 332, 127376. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, L.; Waterhouse, G.I.N.; Wang, M.; Qiao, X.; Xu, Z. Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@COF for sulfamerazine determination. Sens. Actuators B 2019, 281, 107–114. [Google Scholar] [CrossRef]
- Sun, Y.; Waterhouse, G.I.N.; Xu, L.; Qiao, X.; Xu, Z. Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sens. Actuators B 2020, 321, 128501. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. A novel aptamer-metal ions-nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens. Actuators B 2017, 242, 1201–1209. [Google Scholar] [CrossRef]
- Besharati, M.; Hamedi, J.; Hosseinkhani, S.; Saber, R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 2019, 128, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Santos, A.M.; Cincotto, F.H.; Moraes, F.C.; Fatibello-Filho, O.; Sotomayor, M.D.P.T. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 2020, 206, 120252. [Google Scholar] [CrossRef]
- Santos, A.M.; Wong, A.; Cincotto, F.H.; Moraes, F.C.; Fatibello-Filho, O. Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Microchim. Acta 2019, 186, 148. [Google Scholar] [CrossRef]
- Chen, M.; Gan, N.; Zhang, H.; Yan, Z.; Li, T.; Chen, Y.; Xu, Q.; Jiang, Q. Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim. Acta 2016, 183, 1099–1106. [Google Scholar] [CrossRef]
- Nardi-Agmon, I.; Abud-Hawa, M.; Liran, O.; Gai-Mor, N.; Ilouze, M.; Onn, A.; Bar, J.; Shlomi, D.; Haick, H.; Peled, N. Exhaled Breath Analysis for Monitoring Response to Treatment in Advanced Lung Cancer. J. Thorac. Oncol. 2016, 11, 827–837. [Google Scholar] [CrossRef]
- Wang, S.; Xue, Y.; Yu, Z.; Huang, F.; Jin, Y. Layered 2D MOF nanosheets grown on CNTs substrates for efficient nitrite sensing. Mater. Today Chem. 2023, 30, 101490. [Google Scholar] [CrossRef]
- Elfiky, M.; Salahuddin, N.; Hassanein, A.; Matsuda, A.; Hattori, T. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem. J. 2019, 146, 170–177. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Zhao, P.; Wang, C.; Fei, J.; Xie, Y. Ultrasensitive luteolin electrochemical sensor based on zeolitic imidazolate frameworks-derived cobalt trioxide@nitrogen doped carbon nanotube/amino-functionalized graphene quantum dots composites modified glass carbon electrode. Sens. Actuators B 2022, 351, 130938. [Google Scholar] [CrossRef]
- Babulal, S.M.; Koventhan, C.; Chen, S.M.; Hung, W. Construction of sphere like samarium vanadate nanoparticles anchored graphene nanosheets for enhanced electrochemical detection of nitrofurantoin in biological fluids. Composites Part B 2022, 237, 109847. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Shao, B.; Ma, F.; Fan, Z.; Zhang, M.; Zheng, C.; Shang, Y.; Qian, W.; Wei, F. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 2010, 48, 1731–1737. [Google Scholar] [CrossRef]
- Shamsaei, E.; de Souza, F.B.; Yao, X.; Benhelal, E.; Akbari, A.; Duan, W. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr. Build. Mater. 2018, 183, 642–660. [Google Scholar] [CrossRef]
- Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, D.; Wang, S.; Liu, H.; Chen, L. Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing. Sens. Actuators B 2017, 251, 185–191. [Google Scholar] [CrossRef]
- Xing, R.-G.; Li, Y.-N.; Zhang, B.-W. Preparation of chloro-functionalized reduced graphene oxide by silver-catalyzed radical reaction. Chin. Chem. Lett. 2017, 28, 407–411. [Google Scholar] [CrossRef]
- Yi, W.; Li, Z.; Dong, C.; Li, H.-W.; Li, J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem. J. 2019, 148, 774–783. [Google Scholar] [CrossRef]
- Roushani, M.; Ghanbari, K.; Jafar Hoseini, S. Designing an electrochemical aptasensor based on immobilization of the aptamer onto nanocomposite for detection of the streptomycin antibiotic. Microchem. J. 2018, 141, 96–103. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; Yang, Q.; Hou, X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit. Rev. Anal. Chem. 2024, 54, 2636–2657. [Google Scholar] [CrossRef]
- Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron. 2017, 98, 299–304. [Google Scholar] [CrossRef]
- González Fá, A.; Pignanelli, F.; López-Corral, I.; Faccio, R.; Juan, A.; Di Nezio, M.S. Detection of oxytetracycline in honey using SERS on silver nanoparticles. TrAC Trends Anal. Chem. 2019, 121, 115673. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Yang, L.; Zhang, S.; Zheng, H.; Tang, Y.; Wong, D.K.Y. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor. Biosens. Bioelectron. 2019, 142, 111525. [Google Scholar] [CrossRef]
- He, B.; Wang, L.; Dong, X.; Yan, X.; Li, M.; Yan, S.; Yan, D. Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem. 2019, 300, 125179. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Wang, J.; Meng, L.; Yang, T.; Jiao, K. Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin. Chem. Lett. 2016, 27, 231–234. [Google Scholar] [CrossRef]
- Yadav, M.; Ganesan, V.; Gupta, R.; Yadav, D.K.; Sonkar, P.K. Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchem. J. 2019, 146, 881–887. [Google Scholar] [CrossRef]
- Liu, T.-Z.; Hu, R.; Zhang, X.; Zhang, K.-L.; Liu, Y.; Zhang, X.-B.; Bai, R.-Y.; Li, D.; Yang, Y.-H. Metal–Organic Framework Nanomaterials as Novel Signal Probes for Electron Transfer Mediated Ultrasensitive Electrochemical Immunoassay. Anal. Chem. 2016, 88, 12516–12523. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Pei, W.-Y.; Xu, H.-L.; Yang, J.; Ma, J.-F. Composite of a thiacalix[4]arene-copper(I) metal-organic framework and mesoporous carbon for efficient electrochemical detection of antibiotics. Talanta 2024, 269, 125490. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An electrochemical aptasensor for multiplex antibiotics detection using Y-shaped DNA-based metal ions encoded probes with NMOF substrate and CSRP target-triggered amplification strategy. Anal. Chim. Acta 2017, 968, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, Y.; Han, L.; Zhang, J.; Liu, Y.; Baeyens, J.; Lv, Y. Structure-performance relationships in MOF-derived electrocatalysts for CO2 reduction. Prog. Energy Combust. Sci. 2024, 104, 101175. [Google Scholar] [CrossRef]
- Adeel, M.; Asif, K.; Rahman, M.M.; Daniele, S.; Canzonieri, V.; Rizzolio, F. Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Adv. Funct. Mater. 2021, 31, 2106023. [Google Scholar] [CrossRef]
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Cheng, J.; Li, Y.; Zhong, J.; Lu, Z.; Wang, G.; Sun, M.; Jiang, Y.; Zou, P.; Wang, X.; Zhao, Q.; et al. Molecularly imprinted electrochemical sensor based on biomass carbon decorated with MOF-derived Cr2O3 and silver nanoparticles for selective and sensitive detection of nitrofurazone. Chem. Eng. J. 2020, 398, 125664. [Google Scholar] [CrossRef]
- Hasaneen, N.; Akhtarian, S.; Pulicharla, R.; Brar, S.K.; Rezai, P. Surface molecularly imprinted polymer-based sensors for antibiotic detection. TrAC Trends Anal. Chem. 2024, 170, 117389. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Ding, Y.; Ye, D.; Wang, Y.; Cui, S.; Liao, L. Molecularly imprinted electrochemical sensor based on bioinspired Au microflowers for ultra-trace cholesterol assay. Biosens. Bioelectron. 2017, 92, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 2022, 436, 129107. [Google Scholar] [CrossRef]
- Chen, M.; Li, H.; Liu, C.; Liu, J.; Feng, Y.; Wee, A.G.H.; Zhang, B. Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coord. Chem. Rev. 2021, 435, 213778. [Google Scholar] [CrossRef]
- Li, H.; Pan, Q.; Ma, Y.; Guan, X.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Three-Dimensional Covalent Organic Frameworks with Dual Linkages for Bifunctional Cascade Catalysis. J. Am. Chem. Soc. 2016, 138, 14783–14788. [Google Scholar] [CrossRef]
- Chen, L.; Wu, Q.; Gao, J.; Li, H.; Dong, S.; Shi, X.; Zhao, L. Applications of covalent organic frameworks in analytical chemistry. TrAC Trends Anal. Chem. 2019, 113, 182–193. [Google Scholar] [CrossRef]
- Llauradó-Capdevila, G.; Veciana, A.; Guarducci, M.A.; Mayoral, A.; Pons, R.; Hertle, L.; Ye, H.; Mao, M.; Sevim, S.; Rodríguez-San-Miguel, D.; et al. Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. Adv. Mater. 2024, 36, 2470104. [Google Scholar] [CrossRef]
- DeBlase, C.R.; Hernández-Burgos, K.; Silberstein, K.E.; Rodríguez-Calero, G.G.; Bisbey, R.P.; Abruña, H.D.; Dichtel, W.R. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films. ACS Nano 2015, 9, 3178–3183. [Google Scholar] [CrossRef]
- Wu, X.; Han, X.; Xu, Q.; Liu, Y.; Yuan, C.; Yang, S.; Liu, Y.; Jiang, J.; Cui, Y. Chiral BINOL-Based Covalent Organic Frameworks for Enantioselective Sensing. J. Am. Chem. Soc. 2019, 141, 7081–7089. [Google Scholar] [CrossRef]
- Zhu, Q.-Q.; Zhang, W.-W.; Zhang, H.-W.; Yuan, R.; He, H. Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance. J. Mater. Chem. C 2020, 8, 16984–16991. [Google Scholar] [CrossRef]
- Liang, X.-H.; Yu, A.-X.; Bo, X.-J.; Du, D.-Y.; Su, Z.-M. Metal/covalent-organic frameworks-based electrochemical sensors for the detection of ascorbic acid, dopamine and uric acid. Coord. Chem. Rev. 2023, 497, 215427. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, J.; Wang, L.; Zhang, J.; Ding, L.; Liu, H.; Yu, X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. Small 2024, 20, 2307815. [Google Scholar] [CrossRef]
- Al Borhani, W.; Rhouati, A.; Cialla-May, D.; Popp, J.; Zourob, M. Multiplex electrochemical aptasensor for the simultaneous detection of linomycin and neomycin antibiotics. Talanta 2025, 282, 126922. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, C.; Sarpong, V.; Gu, Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for simultaneous detection of antibiotics. Biosens. Bioelectron. 2019, 126, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, M.; Wu, X.; Dong, S.; Zhu, N.; Gyimah, E.; Wang, K.; Li, Y. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels. Chemosphere 2019, 225, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Guo, W.; Qin, X.; Zhao, J.; Pei, M.; Ding, F. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification. Sens. Actuators B 2017, 241, 151–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, S.; Ge, D.; Zhu, N.; Wang, K.; Zhu, G.; Xu, W.; Xu, H. An ultrasensitive competitive immunosensor using silica nanoparticles as an enzyme carrier for simultaneous impedimetric detection of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether. Biosens. Bioelectron. 2018, 105, 77–80. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J.; Wang, Y.; Liu, Z.; Lu, Z. An ultrasensitive aptasensor for detection of Ochratoxin A based on shielding effect-induced inhibition of fluorescence resonance energy transfer. Sens. Actuators B 2016, 222, 797–803. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, P.; Zhang, H.; Cai, C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens. Bioelectron. 2015, 68, 763–770. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Yang, R.; Qu, L.; Harrington, P.D.B. A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethylammonium bromide. Anal. Chim. Acta 2013, 804, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Patra, I.; Kumar, T.C.H.A.; Kumar, N.B.; Kandeel, M.; Sivaraman, R.; Turki Jalil, A.; Yasin, G.; Sharma, S.; Abdulameer Marhoon, H. Smartphone-Based Techniques Using Carbon Dot Nanomaterials for Food Safety Analysis. Crit. Rev. Anal. Chem. 2024, 54, 923–941. [Google Scholar] [CrossRef]
- Wu, R.; Feng, Z.; Zhang, J.; Jiang, L.; Zhu, J.-J. Quantum dots for electrochemical cytosensing. TrAC Trends Anal. Chem. 2022, 148, 116531. [Google Scholar] [CrossRef]
- Li, F.; Wu, Y.; Chen, D.; Guo, Y.; Wang, X.; Sun, X. Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk. Int. J. Hydrogen Energy 2021, 46, 23301–23309. [Google Scholar] [CrossRef]
- Joshi, A.; Kim, K.-H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.R.; Raymundo-Pereira, P.A.; Campos, A.M.; Wilson, D.; Otoni, C.G.; Barud, H.S.; Costa, C.A.R.; Domeneguetti, R.R.; Balogh, D.T.; Ribeiro, S.J.L.; et al. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020, 218, 121153. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Cai, Y.; Xu, S.; Wu, H.; Chen, X.; Huang, Y.; Li, F. Integrated Electrochemical Aptasensor Array toward Monitoring Anticancer Drugs in Sweat. Anal. Chem. 2024, 96, 4997–5005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, Y.; Wu, H.; Wang, Y.; Niu, L.; Li, F. Integrated Aptasensor Array for Sweat Drug Analysis. Anal. Chem. 2022, 94, 7936–7943. [Google Scholar] [CrossRef]
- Rasitanon, N.; Sangsudcha, W.; Jeerapan, I. A diaper-based printed sensing array for noninvasively and speedily detecting morphine and potassium ions. Chem. Eng. J. 2024, 485, 148898. [Google Scholar] [CrossRef]
- Katseli, V.; Economou, A.; Kokkinos, C. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat. Anal. Chem. 2021, 93, 3331–3336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 2020, 170, 112636. [Google Scholar] [CrossRef]
- Downs, A.M.; Bolotsky, A.; Weaver, B.M.; Bennett, H.; Wolff, N.; Polsky, R.; Miller, P.R. Microneedle electrochemical aptamer-based sensing: Real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles. Biosens. Bioelectron. 2023, 236, 115408. [Google Scholar] [CrossRef]
- Gowers, S.A.N.; Freeman, D.M.E.; Rawson, T.M.; Rogers, M.L.; Wilson, R.C.; Holmes, A.H.; Cass, A.E.; O’Hare, D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens. 2019, 4, 1072–1080. [Google Scholar] [CrossRef]
- Keyvani, F.; GhavamiNejad, P.; Saleh, M.A.; Soltani, M.; Zhao, Y.; Sadeghzadeh, S.; Shakeri, A.; Chelle, P.; Zheng, H.; Rahman, F.A.; et al. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. Adv. Sci. 2024, 11, e2309027. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Chen, L.; Lin, H.; Han, D.; Bao, Y.; Wang, W.; Niu, L. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti3C2Tx MXene for the Real-Time Monitoring of Uric Acid Metabolite. Anal. Chem. 2024, 96, 3914–3924. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Tai, L.-C.; Ngo, Q.P.; Chao, M.; Zhang, G.B.; Gao, W.; Bariya, M.; Bullock, J.; Kim, H.; Fahad, H.M.; et al. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis. ACS Sens. 2018, 3, 944–952. [Google Scholar] [CrossRef]
- Nyein, H.Y.Y.; Gao, W.; Shahpar, Z.; Emaminejad, S.; Challa, S.; Chen, K.; Fahad, H.M.; Tai, L.-C.; Ota, H.; Davis, R.W.; et al. A Wearable Electrochemical Platform for Noninvasive Simultaneous Monitoring of Ca2+ and pH. ACS Nano 2016, 10, 7216–7224. [Google Scholar] [CrossRef]
- Martins, T.S.; Machado, S.A.S.; Oliveira, O.N.; Bott-Neto, J.L. Optimized paper-based electrochemical sensors treated in acidic media to detect carbendazim on the skin of apple and cabbage. Food Chem. 2023, 410, 135429. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A. Selective and sensitive multiplexed detection of pesticides in food samples using wearable, flexible glove-embedded non-enzymatic sensors. Chem. Eng. J. 2021, 408, 127279. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Z.; Li, Y.; Wu, X.; Ma, Z.; Sun, W.; Ming Li, C.; Guo, C. Graphdiyne chelated iron-based metal–organic frameworks for electrochemical sensing of antibiotic chloramphenicol with ultralow detection limit. Microchem. J. 2024, 201, 110526. [Google Scholar] [CrossRef]
- Bao, Y.; Cai, K.; Liu, Y.; Li, B. Aptamer-Based Antibiotic Electrochemical Detection Platform Using Portable Plastic Gold Electrode and Multichannel Chip. Chin. J. Chem. 2024, 42, 171–176. [Google Scholar] [CrossRef]
- Liu, Y.; George, A.; Shojaee, M.; Wu, P.; Ashraf, A.; Wickramaratne, D.; Napoli, F.; Patel, N.; Liang, S. A wireless electrochemical Aptamer-Based biosensor platform utilizing printed circuit board electrodes for drug monitoring applications. Microchem. J. 2024, 204, 111038. [Google Scholar] [CrossRef]
- Dogra, P.; Srivastava, M.; Sagar, P.; Tripathi, C.S.P.; Srivastava, S.K. Wireless & portable smartphone assisted electrochemical platform for on-site monitoring of chloramphenicol drug. Biosens. Bioelectron. 2025, 287, 117694. [Google Scholar] [CrossRef]
Antibiotics Class | Example | Target Microbes | Mechanism of Action | Side-Effects | Origin |
---|---|---|---|---|---|
Macrolides | Erythromycin, roxithromycin, clarithromycin | G+, G− | Inhibit protein synthesis | Vomiting, diarrhea, rash, fever | Microbial metabolism |
Tetracyclines | Tetracycline, oxytetracycline, chlortetracycline | G+, G− | Inhibit protein synthesis | Nausea, abdominal pain, loss of appetite, vitamin deficiency | Microbial metabolism, artificial semi-synthesis |
Bata-lactams | Penicillin, cephalosporin, cephalin | G+, G−, haemophilus | Destroy cell wall | Allergy | Microbial metabolism, artificial semi-synthesis |
Sulfonamides | Sulfonamide, sulfadiazine, sulfonthiazole | G+, G−, nocardia, chlamydia | Inhibit folic acid synthesis | Allergy, kidney damage | Artificial synthesis |
Aminoglycosides | Streptomycin, gentamicin, kanamycin | G− | Inhibit protein synthesis, destroy cell membrane | Nephrotoxicity, ototoxicity | Microbial metabolism, artificial semi-synthesis |
Lincosamides | Lincomycin, clindamycin | G+, anaerobic bacteria | Inhibit protein synthesis | abdominal pain, diarrhea, allergy | Artificial semi-synthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Li, Y.; Li, X.; Hu, J.; Zhou, X.; Yang, X. Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects. Sensors 2025, 25, 5541. https://doi.org/10.3390/s25175541
Gong X, Li Y, Li X, Hu J, Zhou X, Yang X. Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects. Sensors. 2025; 25(17):5541. https://doi.org/10.3390/s25175541
Chicago/Turabian StyleGong, Xun, Yingying Li, Xin Li, Jie Hu, Xin Zhou, and Xiupei Yang. 2025. "Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects" Sensors 25, no. 17: 5541. https://doi.org/10.3390/s25175541
APA StyleGong, X., Li, Y., Li, X., Hu, J., Zhou, X., & Yang, X. (2025). Advances in the Electrochemical Detection of Antibiotics: Modified Materials, Wearable Sensors, and Future Prospects. Sensors, 25(17), 5541. https://doi.org/10.3390/s25175541