Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement
Abstract
Highlights
- The low-cost integrating device dedicated to LED strips was developed.
- The device offers flexibility in construction and can be built everywhere.
- The use of this device is quick and measuring accuracy is sufficient for research and development purposes.
- This device competes with conventional, expensive measurement methods effectively lowering the research and development costs for the LED strip lighting equipment.
Abstract
1. Introduction
1.1. Luminous Flux Measurement
- ϕ—the luminous flux [lm]
- ϕe(λ)—the spectral distribution of radiant flux [W/nm]
- Vλ(λ)—the luminous efficiency function for photopic vision [-]
- Km—the maximum luminous efficacy for the photopic vision equals to 683 lm/W
- λ—the wavelength [nm]
- ϕx—the luminous flux of test sample [lm]
- ϕs—the luminous flux of standard lamp [lm]
- ix—the photocurrent value for test sample [-]
- is—the photocurrent value for standard lamp [-]
- iax—the photocurrent value for the test sample illuminated by an auxiliary lamp [-]
- ias—the photocurrent value for the standard sample illuminated by an auxiliary lamp [-]
- The phenomenon of inter-reflections is realized while simultaneously eliminating the direct component of the radiation.
- The internal surface is illuminated with a very high uniformity, which means that the internal surface’s luminance is constant.
- The design of the integrating sphere;
- The sizes and locations of the baffles;
- The type and reliability of standard lamps used;
- The relative position of the standard and the test sample;
- The parameters of the coating applied to the internal surface;
- The size and reflective-transmissive properties of the lamps used;
- The luminous intensity distribution of the standard and the test sample;
- The quality of the photometric head or spectroradiometer (using linearity, spectral, and spatial correction, which are the fundamental photometric requirements);
- Thermal stabilization of the test sample and stabilization of the power supply parameters (which are universal photometric requirements).
1.2. Colorimetric Parameters of Light Sources
1.3. Problems with LED Strips and Main Research Aim
2. Materials and Methods
2.1. The Idea’s Origin
2.2. Planned Research Step by Step
- The device should be inexpensive;
- It should be made of wood or fiberboard (Kluś company has a professional carpentry workshop);
- It should be made without the use of a certified coating for integrating spheres;
- The largest dimension of the device should not exceed 1.0 m;
- The accuracy of luminous flux measurements compared with other laboratories should be around 5.0%.
- δ—the relative error [%]
- ∆x—the approximation error [the unit depends on the measure]
- xr—the reference estimated value [the unit depends on the measure]
- x—the simulated or measured value [the unit depends on the measure]
3. Results and Discussion
3.1. Coating Measurements
3.2. Computer Simulations
3.3. LED Strip Standard Preparation
3.4. Specific Device Configuration
3.5. Verifying Luminous Flux and Color Measurements
3.6. Simplified Cost Analysis and R&D Suitability
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. LED Strip Technical Specification
Appendix A.2. Additional Colorimetric Data for 12 Test Samples of LED Strips
Sample | x [-] | y [-] | CCT [K] | Duv [-] | CRI |
---|---|---|---|---|---|
1 | 0.4424 | 0.3995 | 2872 | 0.002549 | 94.6 |
2 | 0.4156 | 0.3874 | 3254 | 0.003578 | 95.5 |
3 | 0.3886 | 0.3795 | 3806 | 0.001054 | 95.9 |
4 | 0.4431 | 0.4010 | 2872 | 0.002042 | 95.0 |
5 | 0.4138 | 0.3894 | 3308 | 0.002369 | 96.2 |
6 | 0.3897 | 0.3815 | 3793 | 0.000407 | 96.8 |
7 | 0.4647 | 0.408. | 2613 | 0.001355 | 92.6 |
8 | 0.4360 | 0.3984 | 2969 | 0.002197 | 92.3 |
9 | 0.3818 | 0.3770 | 3965 | 0.000319 | 93.3 |
10 | 0.4660 | 0.4095 | 2608 | 0.000895 | 92.5 |
11 | 0.4366 | 0.3982 | 2957 | 0.002345 | 91.9 |
12 | 0.3844 | 0.3802 | 3920 | 0.000447 | 93.8 |
References
- Cuttle, C. Extending the lighting design objectives procedure for holistic lighting solutions. Light. Res. Technol. 2022, 54, 631–656. [Google Scholar] [CrossRef]
- Khan, N.; Abas, N. Comparative study of energy saving light sources. Renew. Sustain. Energy Rev. 2011, 15, 296–309. [Google Scholar] [CrossRef]
- Tong, C.; Yang, H.; Zheng, X.; Chen, Y.; He, J.; Wu, T.; Lu, Y.; Chen, Z.; Guo, W. Luminous characteristics of RGBW mini-LED integrated matrix devices for healthy displays. Opt. Laser Technol. 2024, 170, 110229. [Google Scholar] [CrossRef]
- Ryckaert, W.R.; Lootens, C.; Geldof, J.; Hanselaer, P. Criteria for energy efficient lighting in buildings. Energy Build. 2010, 42, 341–347. [Google Scholar] [CrossRef]
- Durmus, D.; Hu, W.; Davis, W. Lighting application efficacy: A framework for holistically measuring lighting use in buildings. Front. Built Environ. 2022, 8, 1–5. [Google Scholar] [CrossRef]
- Lahti, K.; Hovila, J.; Toivanen, P.; Vahala, E.; Tittonen, I.; Ikonen, E. Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method. Metrologia 2000, 37, 595–598. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, R.; Yang, Z.; Wang, X.; Guan, R. Influence of substrate size and gas on thermal and optical performance of LED filament bulbs. J. Lumin. 2024, 269, 120431. [Google Scholar] [CrossRef]
- Ohno, Y.; Lindemann, M.; Sauter, G. Analysis of integrating sphere errors for lamps having different angular intensity distributions. J. Illum. Eng. Soc. 1997, 26, 107–114. [Google Scholar] [CrossRef]
- Richman, E.; Merzouk, M. A comparison of 2 pi and 4 pi photometric testing of directional and omnidirectional sources in an integrating sphere. LEUKOS—J. Illum. Eng. Soc. N. Am. 2014, 10, 183–191. [Google Scholar] [CrossRef]
- Kokka, A.; Pulli, T.; Ferrero, A.; Dekker, P.; Thorseth, A.; Kliment, P.; Klej, A.; Gerloff, T.; Ludwig, K.; Poikonen, T.; et al. Validation of the fisheye camera method for spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Metrologia 2019, 56, ab17fe. [Google Scholar] [CrossRef]
- Labsphere Integrating Sphere Radiometry and Photometry Technical Guide. PB-16010-000 Rev.00 2017. Available online: https://labsphere.com/wp-content/uploads/2021/09/Integrating-Sphere-Radiometry-and-Photometry.pdf (accessed on 30 August 2025).
- Poikonen, T.; Manninen, P.; Kärhä, P.; Ikonen, E. Multifunctional integrating sphere setup for luminous flux measurements of light emitting diodes. Rev. Sci. Instrum. 2010, 81, 023102. [Google Scholar] [CrossRef]
- Moreno, I.; Sun, C.-C. Modeling the radiation pattern of LEDs. Opt. Express 2008, 16, 1808. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; van Driel, W.D.; Fan, X.; Fan, J.; Qian, C.; Zhang, G.Q. Color shift acceleration on mid-power LED packages. Microelectron. Reliab. 2017, 78, 294–298. [Google Scholar] [CrossRef]
- Słomiński, S. Advanced modelling and luminance analysis of LED optical systems. Bull. Polish Acad. Sci. Tech. Sci. 2019, 67, 1107–1116. [Google Scholar] [CrossRef]
- International Comission on Illumination (CIE), Technical Report No. 84: Measurment of Luminous Flux, CIE, Vienna, 1989. Available online: https://cie.co.at/publications/measurement-luminous-flux (accessed on 30 August 2025).
- Liu, M.Q.; Zhou, X.L.; Li, W.Y.; Chen, Y.Y.; Zhang, W.L. Study on methodology of LED’s luminous flux measurement with integrating sphere. J. Phys. D Appl. Phys. 2008, 41, 144012. [Google Scholar] [CrossRef]
- Clarke, F.J.J.; Compton, J.A. Correction methods for integrating-sphere measurement of hemispherical reflectance. Color Res. Appl. 1986, 11, 253–262. [Google Scholar] [CrossRef]
- Skarżyński, K.; Zalewski, S.; Pracki, P.; Czyżewski, C.; Słomiński, S.; Wiśniewski, A.; Wesołowski, M. Laboratorium Podstaw Techniki Świetlnej (Eng. Laboratory of Lighting Technology Basics), 1st ed.; (In Polish). Skarżyński, K., Ed.; Oficyna Wydawnicza Politechniki Warszawskiej (OWPW): Warsaw, Poland, 2023. [Google Scholar]
- McCamy, C.S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 1992, 17, 142–144. [Google Scholar] [CrossRef]
- Lin, Y.; Deng, Z.; Guo, Z.; Liu, Z.; Lan, H.; Lu, Y.; Cao, Y. Study on the correlations between color rendering indices and the spectral power distribution. Opt. Express 2014, 22, A1029. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Jiang, Y.; Lu, Y.; Wang, L.; Xie, Y.; Zhou, W.; Li, Y.; Sun, X. A novel composite structure to balance luminous efficacy and color rendering in laser-driven solid-state lighting. J. Lumin. 2025, 281, 121160. [Google Scholar] [CrossRef]
- Fryc, I.; Listowski, M.; Supronowicz, R.; Mozyrska, D.; Rosas, E.; Eppeldauer, G.; Csuti, P.; Ferrero, A. The spectral mismatch correction factor estimation using broadband photometer measurements and catalog parameters for tested white LED sources. Opt. Lasers Eng. 2025, 184, 108614. [Google Scholar] [CrossRef]
- Durmus, D. Correlated color temperature: Use and limitations. Light. Res. Technol. 2022, 54, 363–375. [Google Scholar] [CrossRef]
- Mlynczak, J. Measuring the low divergent luminous flux emitted by LED torch lamps using a simple detector and a spectrometer as an alternative to an integrating sphere. Meas. J. Int. Meas. Confed. 2025, 241, 115725. [Google Scholar] [CrossRef]
- Kim, E.; Chung, J.; Lee, J.; Cho, H.; Cho, N.S.; Yoo, S. A systematic approach to reducing angular color shift in cavity-based organic light-emitting diodes. Org. Electron. 2017, 48, 348–356. [Google Scholar] [CrossRef]
- Liu, B.; Yuan, Y.; Yu, Z.Y.; Huang, X.; Tan, H.P. Numerical investigation of measurement error of the integrating sphere based on the Monte-Carlo method. Infrared Phys. Technol. 2016, 79, 121–127. [Google Scholar] [CrossRef]
- International Comission on Illumination (CIE), S 025/E:2015 Test Method for Med Lamps, Led Luminaires and Led Modules, CIE, Vienna, 2015. Available online: https://cie.co.at/publications/test-method-led-lamps-led-luminaires-and-led-modules (accessed on 30 August 2025).
- Skarżyński, K. Research note: On relation between photopic luminous efficacy and colour rendering of LED strips. Light. Res. Technol. 2025, 57, 196–209. [Google Scholar] [CrossRef]
- Sametoglu, F. Construction of two-axis goniophotometer for measurement of spatial distribution of a light source and calculation of luminous flux. Acta Phys. Pol. A 2011, 119, 783–791. [Google Scholar] [CrossRef]
- da Cruz Junior, L.B.; Bachmann, L. Manufacture and characterization of a 3D-printed integrating sphere. Instrum. Sci. Technol. 2021, 49, 276–287. [Google Scholar] [CrossRef]
- International Commision on Illumination (CIE), Technical Report CIE no. 127: Measurement of LEDs, CIE, Vienna, 2007, ISBN 978 3 901906 58 9. Available online: https://cie.co.at/publications/measurement-leds (accessed on 30 August 2025).
- Nakazawa, Y.; Godo, K.; Niwa, K.; Zama, T.; Yamaji, Y.; Matsuoka, S. Development of LED-based standard source for total luminous flux calibration. Light. Res. Technol. 2019, 51, 870–882. [Google Scholar] [CrossRef]
- Mcguyer, B.H.; Ben-Kish, A.; Jau, Y.-Y.; Happer, W. Notes on Integrating Sphere Paint. 2011. Available online: https://bartmcguyer.com/notes/note-5-IntegratingSpherePaint.pdf (accessed on 30 August 2025).
- Grum, F.; Luckey, G.W. Optical Sphere Paint and a Working Standard of Reflectance. Appl. Opt. 1968, 7, 2289. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.D.; Boeré, A.; Kondratowicz, T.; Crowe, T.G.; Brown, R.B.; Naylor, D.A. Characterization of a low-cost diffuse reflectance coating. Can. J. Remote Sens. 2008, 34, 68–76. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, R.; Xie, B.; Yu, X.; Luo, X.; Yu, Z.; Zhang, L.; Wang, H.; Jin, X. Energy-Saving Light Source Spectrum Optimization by Considering Object’s Reflectance. IEEE Photonics J. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Peterson, J.; Vignola, F.; Habte, A.; Sengupta, M. Developing a spectroradiometer data uncertainty methodology. Sol. Energy 2017, 149, 60–76. [Google Scholar] [CrossRef]
- Skarżyński, K.; Żagan, W.; Krajewski, K. LED luminaires: Many Chips-Many Photometric and Lighting ng Simulation Issues to Solve Simulation Issues to Solve. Energies 2021, 14, 4646. [Google Scholar] [CrossRef]
- Mangkuto, R.A. Validation of DIALux 4.12 and DIALux evo 4.1 against the Analytical Test Cases of CIE 171:2006. LEUKOS—J. Illum. Eng. Soc. N. Am. 2016, 12, 139–150. [Google Scholar] [CrossRef]
- Yang, W.; Jeon, J.Y. Effects of correlated colour temperature of LED light on visual sensation, perception, and cognitive performance in a classroom lighting environment. Sustainability 2020, 12, 4051. [Google Scholar] [CrossRef]
- Haque, F.; Azad, A. Luminous measurement of LED lights in cost effective way using cylindrical method. Meas. J. Int. Meas. Confed. 2017, 98, 123–130. [Google Scholar] [CrossRef]
Lamp Type | Paint Sample | ||
---|---|---|---|
1:10 | 1:8 | 1:6 | |
Incandescent lamp—2850 K | 82.8 | 81.6 | 79.7 |
LED lamp—6600 K | 82.0 | 82.0 | 77.2 |
Lid Type | Baffle Size [cm]/Distance from the Wall [cm] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40/45 | 40/40 | 40/35 | 40/30 | 40/25 | 40/20 | 40/15 | 40/10 | 30/25 | 30/30 | 30/15 | 30/10 | 20/15 | 20/10 | |
Geometry 1 | ||||||||||||||
LID-1 | 0.24 | 0.08 | 0.55 | 0.64 | 1.23 | 1.47 | 2.18 | 2.22 | 0.53 | 1.01 | 1.41 | 2.54 | 0.89 | 1.68 |
LID-2 | 2.29 | 2.05 | 1.46 | 0.40 | 0.59 | 2.50 | 5.40 | 6.87 | 0.56 | 2.33 | 5.17 | 9.07 | 4.05 | 9.42 |
LID-3 | 0.40 | 0.39 | 0.24 | 0.16 | 0.25 | 0.43 | 0.28 | 0.67 | 0.08 | 0.39 | 0.58 | 0.47 | 0.15 | 0.40 |
AVG | 0.98 | 0.84 | 0.75 | 0.40 | 0.69 | 1.47 | 2.62 | 3.25 | 0.39 | 1.24 | 2.39 | 4.03 | 1.70 | 3.83 |
Geometry 2 | ||||||||||||||
LID-1 | 0.85 | 0.85 | 0.64 | 0.14 | 0.22 | 0.16 | 0.08 | 0.89 | 0.55 | 0.35 | 0.15 | 1.43 | 0.61 | 0.57 |
LID-2 | 2.51 | 2.81 | 2.08 | 1.24 | 0.37 | 1.52 | 3.65 | 6.85 | 0.44 | 1.25 | 3.96 | 8.10 | 2.64 | 7.37 |
LID-3 | 0.43 | 0.14 | 0.07 | 0.29 | 0.52 | 0.78 | 0.93 | 0.49 | 0.27 | 0.35 | 0.90 | 0.59 | 0.47 | 0.57 |
AVG | 1.26 | 1.27 | 0.93 | 0.56 | 0.37 | 0.82 | 1.55 | 2.74 | 0.42 | 0.65 | 1.67 | 3.37 | 1.24 | 2.84 |
Geometry 3 | ||||||||||||||
LID-1 | 1.45 | 1.82 | 0.46 | 0.20 | 0.41 | 0.95 | 1.11 | 2.14 | 0.13 | 0.40 | 0.77 | 2.44 | 0.06 | 1.21 |
LID-2 | 4.95 | 5.59 | 3.79 | 3.73 | 2.27 | 0.16 | 1.69 | 4.42 | 2.67 | 1.05 | 1.77 | 6.12 | 0.24 | 4.84 |
LID-3 | 0.26 | 1.04 | 0.46 | 1.27 | 0.83 | 0.66 | 0.79 | 0.46 | 0.64 | 0.79 | 0.77 | 0.24 | 0.57 | 0.67 |
AVG | 2.22 | 2.82 | 1.57 | 1.73 | 1.17 | 0.59 | 1.20 | 2.34 | 1.15 | 0.75 | 1.10 | 2.93 | 0.29 | 2.24 |
t [h] | LED Strip Standard—Sample 1 | LED Strip Standard—Sample 2 | ||||
---|---|---|---|---|---|---|
1 | 24.05 | 192 | 522 | 24.05 | 193 | 522 |
50 | 24.08 | 192 | 524 | 24.08 | 193 | 523 |
214 | 24.05 | 195 | 525 | 24.05 | 195 | 525 |
Relative Error | Photometer | Distance from the Wall [cm] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | ||
L | <1.5 | 0.52 | 0.26 | 1.87 | 1.17 | 0.66 | 0.61 | 0.39 | 4.11 | |
A | <3 | 1.52 | 1.34 | 1.03 | 1.08 | 2.32 | 1.19 | 2.24 | 3.01 | |
2.04 | 0.79 | 1.77 | 1.70 | 1.65 | 1.63 | 1.61 | 1.61 | |||
2.21 | 1.83 | 1.98 | 1.96 | 1.93 | 1.93 | 1.93 | 1.91 | |||
2.40 | 0.14 | 2.02 | 1.89 | 1.82 | 1.72 | 1.72 | 1.72 |
LED Strip | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Basic Data of LED Strips for Verification Tests | ||||||||||||
3000 | 3500 | 4000 | 3000 | 3500 | 4000 | 2700 | 3000 | 4000 | 2700 | 3000 | 4000 | |
325 | 330 | 348 | 963 | 978 | 1020 | 360 | 383 | 400 | 1115 | 1138 | 1150 | |
Integrating Sphere | ||||||||||||
16 | 33 | 21 | 60 | 83 | 10 | 11 | 16 | 16 | 51 | 49 | 71 | |
[-] | 0.0025 | 0.0025 | 0.0029 | 0.0018 | 0.0022 | 0.0028 | 0.0032 | 0.0031 | 0.0035 | 0.0020 | 0.0024 | 0.0031 |
[-] | 0.0056 | 0.0066 | 0.0071 | 0.0056 | 0.0063 | 0.0070 | 0.0061 | 0.0068 | 0.0076 | 0.0054 | 0.0061 | 0.0071 |
6 | 6 | 17 | 19 | 9 | 15 | 5 | 4 | 35 | 16 | 10 | 28 | |
Goniophotometer | ||||||||||||
11 | 2 | 12 | 42 | 18 | 57 | 3 | 1 | 13 | 44 | 55 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skarżyński, K.; Krzysztoń, T. Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement. Sensors 2025, 25, 5533. https://doi.org/10.3390/s25175533
Skarżyński K, Krzysztoń T. Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement. Sensors. 2025; 25(17):5533. https://doi.org/10.3390/s25175533
Chicago/Turabian StyleSkarżyński, Krzysztof, and Tomasz Krzysztoń. 2025. "Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement" Sensors 25, no. 17: 5533. https://doi.org/10.3390/s25175533
APA StyleSkarżyński, K., & Krzysztoń, T. (2025). Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement. Sensors, 25(17), 5533. https://doi.org/10.3390/s25175533