Research on the Multi-Degree-of-Freedom Programmable Lighting Method
Abstract
1. Introduction
2. Coupled Modeling of Multi-Physical Properties for Multi-Degree-of-Freedom Programmable Lighting
2.1. Modeling the Spatial–Spectral Distribution of the Light Source to the Slit
2.2. Modeling of Spectral Dispersion and Energy Distribution from Slit to DMD Surface
2.3. Modeling of Compensation Mechanisms for Spectral Distortion and Nonlinear Energy Distribution
2.4. Integrating Sphere-Homogeneous Projection Co-Transport Modeling
3. Optical System Design and System Compensation
3.1. Design of the Spectral Modulation Optical System
3.2. Design of the Homogeneous Projection System
3.3. Compensation for Spectral Distortion and Nonlinear Energy Distribution
4. Performance Verification and Comparison
4.1. Performance Multi-Degree-of-Freedom Programmable Lighting System
4.1.1. Wavelength Scanning
4.1.2. Intensity Encoding
4.1.3. Wide-Band Target Spectral Modulation
4.2. Comparison of Domestic and International Studies
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; Cui, Q.; Wang, Z.; Gao, L. Coded Aperture Snapshot Hyperspectral Light Field Tomography. Opt. Express 2023, 31, 37336–37347. [Google Scholar] [CrossRef]
- Long, J.; Deng, Y.; Gao, Z.; Chang, H.; Chang, Q.; Ma, Y.; Wu, J.; Su, R.; Ma, P.; Zhou, P. High-Power Mode-Programmable Orbital Angular Momentum Beam Emitter with an Internally Sensed Optical Phased Array. Chin. Opt. Lett. 2024, 22, 021402. [Google Scholar] [CrossRef]
- Luo, D.; Taphanel, M.; Längle, T.; Beyerer, J. Programmable Light Source Based on an Echellogram of a Supercontinuum Laser. Appl. Opt. 2017, 56, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Classen, A.; Liu, X.; Zheltikov, A.M.; Agarwal, G.S. Analysis of Intensity Correlation Enhanced Plasmonic Structured Illumination Microscopy. Opt. Lett. 2021, 46, 1554–1557. [Google Scholar] [CrossRef]
- Tomoda, H.; Yoshida, T.; Kashiwazaki, T.; Umeki, T.; Enomoto, Y.; Takeda, S. Programmable Time-Multiplexed Squeezed Light Source. Opt. Express 2022, 31, 2161–2176. [Google Scholar] [CrossRef]
- Yao, X.S.; Yang, Y.; Ma, X.; Lin, Z.; Zhu, Y.; Ke, W.; Tan, H.; Wang, X.; Cai, X. On-Chip Real-Time Detection of Optical Frequency Variations with Ultrahigh Resolution Using the Sine-Cosine Encoder Approach. Nat. Commun. 2025, 16, 3092. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Zhang, J.; Zhang, Y.; Lu, L.; Zuo, C. Efficient Quantitative Phase Microscopy Using Programmable Annular LED Illumination. Biomed. Opt. Express 2017, 8, 4687–4705. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wang, Y.; Li, D. Color-Multiplexed 3D Differential Phase Contrast Microscopy with Optimal Annular Illumination. Opt. Express 2024, 32, 49135–49152. [Google Scholar] [CrossRef]
- Sheng, K.; Zhang, Y.; Wu, C.; Ni, J.; Huang, Y.; Li, Z.; Dong, M.; Wang, Y.; Liu, Y.; Zhang, Y. Single Snapshot Spatial Frequency Domain Imaging with Synchronous 3D Profile Correction. Opt. Express 2024, 32, 36888–36906. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, N.B.; Stange, U.; Lane, P.M.; MacAulay, C.E. Multispectral Endoscopy and Microscopy Imaging System Using a Spectrally Programmable Light Engine. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 22–27 January 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5694, pp. 120–125. [Google Scholar]
- MacKinnon, N.B.; Khojasteh, M.; Lane, P.M.; MacAulay, C.E.; Guillaud, M.; Stange, U. Hyperspectral Imaging and Spectral Unmixing of Stained Tissue Sections Using a Spectrally Programmable Light Engine. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 20–25 January 2007; SPIE: Bellingham, WA, USA, 2007; Volume 6441, pp. 85–89. [Google Scholar]
- MacKinnon, N.B.; Stange, U.; Lane, P.M.; MacAulay, C.E.; Quatrevalet, M. Spectrally Programmable Light Engine for in Vitro or in Vivo Molecular Imaging and Spectroscopy. Appl. Opt. 2005, 44, 2033–2040. [Google Scholar] [CrossRef]
- Love, S.P.; Graff, D.L. Full-Frame Programmable Spectral Filters Based on Micro-Mirror Arrays. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 2–7 February 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8618, pp. 99–110. [Google Scholar]
- Luo, D.; Bauer, S.; Taphanel, M.; Längle, T.; Puente León, F.; Beyerer, J. Optical Unmixing Using Programmable Spectral Source Based on DMD. In Proceedings of the SPIE—The International Society for Optical Engineering, Baltimore, MD, USA, 17–21 April 2016; Druy, M.A., Crocombe, R.A., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9855, pp. 138–146. [Google Scholar]
- Liu, Q.; Zhang, G.; Zhang, Y.; Zhang, J.; Sun, G.; Liang, W.; Shi, H.; Du, Z.; Zhao, B.; Ren, T.; et al. Multi-Color Temperature and Magnitude Simulation for Astronomical Spectral Velocity Measurement. IEEE Access 2023, 11, 108104–108116. [Google Scholar] [CrossRef]
- Yun, Z.; Zhang, Y.; Liu, Q.; Ren, T.; Zhao, B.; Xu, D.; Yang, S.; Ren, D.; Yang, J.; Mo, X.; et al. Research on Simulation Method of BP Neural Network PID Control for Stellar Spectrum. Opt. Express 2024, 32, 38879–38895. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.M.; Williams, D.G.; Roelens, M.A.F.; Eggleton, B.J. Reconfigurable Optical Pulse Generator Employing a Fourier-Domain Programmable Optical Processor. J. Light. Technol. 2010, 28, 97–103. [Google Scholar] [CrossRef]
- Hirai, K.; Irie, D.; Horiuchi, T. Multi-Primary Image Projector Using Programmable Spectral Light Source. J. Soc. Inf. Disp. 2016, 24, 144–153. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, D.; Chang, Y.; Chen, S.-C. Arbitrary Amplitude Femtosecond Pulse Shaping via a Digital Micromirror Device. J. Innov. Opt. Health Sci. 2018, 12, 1840002. [Google Scholar] [CrossRef]
- Yan, X.; Zou, X.; Pan, W.; Yan, L.; Azaña, J. Fully Digital Programmable Optical Frequency Comb Generation and Application. Opt. Lett. 2018, 43, 283–286. [Google Scholar] [CrossRef]
- Mühleis, M.; Hohl-Ebinger, J. Programmable Spectral Shaping Demonstrated at the Solar Spectral Irradiance Distribution. Opt. Express 2021, 29, 8223–8234. [Google Scholar] [CrossRef]
- Schenkel, M.R.; Vogt, V.A.; Schiller, S. Metrology-Grade Spectroscopy Source Based on an Optical Parametric Oscillator. Opt. Express 2024, 32, 43350–43365. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, J.; Zhou, W.; Xu, B.; Sun, J.; Yang, X. Structure-Guided Laser Speckle Contrast Imaging for Enhancing Microvascular Visualization in Dual-Display Laparoscopy. Opt. Express 2025, 33, 14170–14183. [Google Scholar] [CrossRef]
- Liu, H.; Song, K.; Bian, Y.; Xiao, L. Single-Photon Single-Pixel Dual-Wavelength Imaging via Frequency Spectral Harmonics Extraction Strategy. Opt. Express 2024, 33, 1636–1646. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, S.; Song, P.; Wang, R.; Yang, L.; Zhang, T.; Zheng, G. Optical Ptychography for Biomedical Imaging: Recent Progress and Future Directions [Invited]. Biomed. Opt. Express 2023, 14, 489–532. [Google Scholar] [CrossRef]
- Sun, R.; Yang, D.; Hu, Y.; Hao, Q.; Li, X.; Zhang, S. Unsupervised Adaptive Coded Illumination Fourier Ptychographic Microscopy Based on a Physical Neural Network. Biomed. Opt. Express 2023, 14, 4205–4216. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, N.; Chen, Y.; Sun, J.; Lu, L.; Chen, Q.; Zuo, C. Lens-Free On-Chip 3D Microscopy Based on Wavelength-Scanning Fourier Ptychographic Diffraction Tomography. Light Sci. Appl. 2024, 13, 237. [Google Scholar] [CrossRef] [PubMed]
- Skarsoulis, K.; Makris, K.; Moser, C.; Psaltis, D. Ptychography Imaging with Fiber Endoscope via Wavelength Scanning. Optica 2024, 11, 782–790. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Liu, Z.; Wang, W.; Liu, L.; Li, W. A Random Angle Error Interference Eliminatifng Method for Grating Interferometry Measurement Based on Symmetry Littrow Structure. Laser Photonics Rev. 2025, 19, 2401659. [Google Scholar] [CrossRef]
- Tang, H.; Lou, B.; Du, F.; Gao, G.; Zhang, M.; Ni, X.; Hu, E.; Yacoby, A.; Cao, Y.; Fan, S.; et al. An Adaptive Moiré Sensor for Spectro-Polarimetric Hyperimaging. Nat. Photonics 2025, 19, 463–470. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Bayanheshig; Liu, Z.; Wang, W.; Jiang, S.; Li, Y.; Li, S.; Zhang, W.; Jiang, Y.; et al. Controlling the Wavefront Aberration of a Large-Aperture and High-Precision Holographic Diffraction Grating. Light Sci. Appl. 2025, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Okuno, M. Coherent Anti-Stokes Hyper-Raman Spectroscopy. Nat. Commun. 2025, 16, 306. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Xia, Z.; Sui, L.; Fang, W. Spectral Irradiance Degradation Model of Halogen Tungsten Lamps at Wavelength from 400 Nm to 1300 Nm. Chin. Opt. 2022, 15, 825–834. [Google Scholar] [CrossRef]
- Jelínek, M.; Kubeček, V.; JelÍnková, H.; Matějec, V.; Kašik, I.; Podrazký, O. Experimental Investigation of High Power Picosecond 1.06 μm Pulse Propagation in Bragg Fibers. In Proceedings of the SPIE Proceedings, Prague, Czech Republic, 15–18 April 2013; SPIE: Bellingham, WA, USA, 2013; Volume 8772, pp. 188–197. [Google Scholar]
- Shi, W.; Gao, L.; Zhang, L.; Feng, Z.; Fang, F.; Xia, G. The Evaluation of Spectral Resolution in the Optical Design of a Czerny-Turner Spectrometer. Photonics 2022, 9, 678. [Google Scholar] [CrossRef]
- Weismann, M.; Panoiu, N.C. Theoretical and Computational Analysis of Second- and Third-Harmonic Generation in Periodically Patterned Graphene and Transition-Metal Dichalcogenide Monolayers. Phys. Rev. B 2016, 94, 035435. [Google Scholar] [CrossRef]
- Shi, H.; Jiang, H.; Zhang, X.; Wang, C.; Liu, T. Analysis of Nodal Aberration Properties in Off-Axis Freeform System Design. Appl. Opt. 2016, 55, 6782–6790. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Li, Y.; Jiang, L.; Wang, C.; Liu, Z.; Jiang, H. Analysis of Aberration Properties of Pupil Off-Axis Freeform Surface Optical System. Acta Opt. Sin. 2018, 37, 1208001. [Google Scholar]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective Measurement of Wave Aberrations of the Human Eye with the Use of a Hartmann–Shack Wave-Front Sensor. J. Opt. Soc. Am. A 1994, 11, 1949–1957. [Google Scholar] [CrossRef]
- Khan, A.; Ullah, S.A.; Jabar, A.; Bacha, B.A. Fizeau’s Light Birefringence Dragging Effect in a Moving Chiral Medium. Eur. Phys. J. Plus 2021, 136, 88. [Google Scholar] [CrossRef]
- Mansouree, M.; Kwon, H.; Arbabi, E.; McClung, A.; Faraon, A.; Arbabi, A. Multifunctional 2.5D Metastructures Enabled by Adjoint Optimization. Optica 2020, 7, 77–84. [Google Scholar] [CrossRef]
- Sirek, S.; Kane, R. The Tungsten Halogen Lamp; River Publishers: Gistrup, Denmark, 2020; pp. 75–91. ISBN 9781003150985. [Google Scholar]
- Gao, Y.; Zhang, S.; Wang, X.; Shi, R.; Zhao, Y.; Li, Z. Reconfigurable Optical Time Delay Array for 3D Lidar Scene Projector. Opt. Express 2020, 28, 39688–39699. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, L.; Wang, J. Development of Large Aperture Integrating Sphere Radiation Source in Ultraviolet Band. Acta Opt. Sin. 2021, 41, 2012005. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Wang, Y.; He, Y.; Feng, G.; Wu, H.; Zheng, C.; Li, P.; Gan, H. Miniaturized Integrating Sphere Light Sources Based on LEDs for Radiance Responsivity Calibration of Optical Imaging Microscopes. Opt. Express 2020, 28, 32199–32213. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Yang, B.; Liu, Y.; Zhao, Q.; Chen, S.; Chen, Q.; Zhao, Z. Evolved Design for Telecentric Optical Systems Based on Particle Swarm Optimization and Semi-Supervised Learning. Opt. Commun. 2023, 546, 129769. [Google Scholar] [CrossRef]
- Wang, J.; Shi, H.; Liu, J.; Li, Y.; Fu, Q.; Wang, C.; Jiang, H. Compressive Space-Dimensional Dual-Coded Hyperspectral Polarimeter (CSDHP) and Interactive Design Method. Opt. Express 2023, 31, 9886–9903. [Google Scholar] [CrossRef]
- Doskolovich, L.L.; Mingazov, A.A.; Byzov, E.V.; Skidanov, R.V.; Ganchevskaya, S.V.; Bykov, D.A.; Bezus, E.A.; Podlipnov, V.V.; Porfirev, A.P.; Kazanskiy, N.L. Hybrid Design of Diffractive Optical Elements for Optical Beam Shaping. Opt. Express 2021, 29, 31875–31890. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Li, Y.; Sheng, L.; Xia, Y.; Zhang, S.; Gu, S. Research on the Cascade Modulation Method for Star Position Simulation in a Weak Starlight Simulator. Opt. Express 2025, 33, 5627–5639. [Google Scholar] [CrossRef]
- Bach, H.; Neuroth, N. The Properties of Optical Glass; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Wang, F.; Chen, Y.; Liu, X.; Cai, Y.; Ponomarenko, S.A. Self-Reconstruction of Partially Coherent Light Beams Scattered by Opaque Obstacles. Opt. Express 2016, 24, 23735–23746. [Google Scholar] [CrossRef]
- Chrzanowski, K.; Raźniewski, T.; Radzik, B. Monochromatic Light Sources in Testing Image Intensifier Tubes. Photonics Lett. Pol. 2009, 1, 79–81. [Google Scholar]
- Fairhurst, C. Advances in Apparel Production; Woodhead Publishing in Association with the Textile Institute; Boca Raton: Cambridge, UK, 2008; ISBN 9781845692957. [Google Scholar]
- Liu, H.; Ren, J.; Liu, Z.; Wan, Z.; Li, B. LED-Based Single Star Simulator with Multi-Color-Temperature and Multi-Star-Magnitude Output. Acta Opt. Sin. 2015, 35, 187–194. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Zhang, J.; Zhao, B.; Zhang, G. Simulation of Stellar Spectrum Controlled by Fuzzy PID. Opt. Precis. Eng. 2023, 31, 1619–1630. [Google Scholar] [CrossRef]
/pixel | /% | |
---|---|---|
Before Compensation | 4 | 5.14 |
After Compensation | 2 | 99.80 |
Enhancement Factor | 2 | 19.42 |
Literature | Implementation Functions | Main Technical Indicators | |
---|---|---|---|
Grating light valve spectral shaping system (Mühleis et al., 2021) [21] | AM1.5G solar spectrum simulation | Spectral resolution: 7 to 15 nm | |
Wavelength scanning system (Wu et al., 2024) [27] | Single-wavelength spectral scanning | Spectral resolution: 1 to 11 nm | |
All-digital optical frequency comb (Yan et al., 2019) [20] | Optical frequency comb modulation with programmable comb spacing | Adjustable comb spacing, and strength nonuniformity standard deviation of >25% | |
DMD femtosecond pulse shaping (Gu et al., 2019) [19] | Pulse shape spectral shaping | Rectangle/jagged/triangle spectrum generation | |
BP-PID control of spectral simulation (Yun, 2024) [16] | Wide-band target spectral simulation | Spectral modulation error of less than ±3.5% | |
This study | Wavelength scanning mode | Wavelength continuous scan output | Wavelength error of <0.2 nm and uniformity of >95.85 |
Intensity encoding mode | Intensity linear modulation | Linearity of >0.9992 | |
Wide-band target spectral modulation mode | Arbitrary target spectral shaping | Spectral modulation error of less than ±1.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Zhang, J.; Peng, Z.; Shi, H.; Yang, D.; Yang, S.; Sun, J.; Zhang, Y.; Zhao, B.; Ren, T.; et al. Research on the Multi-Degree-of-Freedom Programmable Lighting Method. Sensors 2025, 25, 5525. https://doi.org/10.3390/s25175525
Ren D, Zhang J, Peng Z, Shi H, Yang D, Yang S, Sun J, Zhang Y, Zhao B, Ren T, et al. Research on the Multi-Degree-of-Freedom Programmable Lighting Method. Sensors. 2025; 25(17):5525. https://doi.org/10.3390/s25175525
Chicago/Turabian StyleRen, Dianwu, Jian Zhang, Zeng Peng, Haodong Shi, Dongpeng Yang, Songzhou Yang, Jingrui Sun, Yu Zhang, Bin Zhao, Taiyang Ren, and et al. 2025. "Research on the Multi-Degree-of-Freedom Programmable Lighting Method" Sensors 25, no. 17: 5525. https://doi.org/10.3390/s25175525
APA StyleRen, D., Zhang, J., Peng, Z., Shi, H., Yang, D., Yang, S., Sun, J., Zhang, Y., Zhao, B., Ren, T., Wang, L., Zou, Y., Zhang, K., & Lv, J. (2025). Research on the Multi-Degree-of-Freedom Programmable Lighting Method. Sensors, 25(17), 5525. https://doi.org/10.3390/s25175525