On the Role of Artificial Intelligent Technology for Millimetre-Wave and Terahertz Applications
Abstract
1. Introduction
2. Motivation and Scope of This Work
3. Definition of Optimization
- : Vector with m objective functions;
- : Vector with k constraints;
- x: Vector with n design variables within the design space .
4. Definition of Artificial Intelligence
5. Application of AI at mm-Wave and THz Band Frequencies
5.1. Application of AI at mm-Wave
5.2. Application of AI at THz
6. Future Directions About This Concept
6.1. Multi-Objective Optimization
- Algorithms based on animals, plants or insect behaviors (bio-inspired) include:
- Particle swarm optimization (PSO) [105];
- Ant colony optimization (ACO) [106];
- Artificial bee colony (ABC) [107];
- Artificial fish swarm algorithm (AFSA) [108];
- Artificial plant optimization algorithm (APOA) [109];
- Chicken swarm optimization algorithm (CSO) [110];
- Bacterial foraging optimization (BFO) [111];
- Firefly algorithm (FA) [112];
- Fruit fly optimization algorithm (FOA) [113];
- Wolf pack algorithm (WPA) [114];
- Shuffled frog leaping algorithm (SFLA) [115];
- Cuckoo search algorithm (CSA) [116];
- Bat algorithm (BA) [117].
- Algorithms based on human treatments:
- Algorithms based on evolution processes:
6.2. Type of NNs
- Recurrent neural network (RNN) [129];
- Long short-term memory (LSTM) [130];
- Gated recurrent unit (GRU) [131];
- Auto encoder (AE) [132];
- Denoising AE [133];
- Markov chain (MC) [134];
- Deep convolutional network (DCN) [135];
- Generative adversarial network (GAN) [136];
- Deep residual convolutional network (DRCN) [137];
- Support vector machine (SVM) [138];
- Recurrent neural network (RNN) [139];
- Transfer learning neural network (TLNN) [140];
- Reinforcement learning (RL) [141].
6.3. Implementation of Quantum Computing (QC)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, S.; Zhang, J.; Nauman, A.; Khan, A.; Abbas, K.; Hayat, B. Deep-EERA: DRL-Based Energy-Efficient Resource Allocation in UAV-Empowered Beyond 5G Networks. Tsinghua Sci. Technol. 2025, 30, 418–432. [Google Scholar] [CrossRef]
- Al-Jumaily, A.; Sali, A.; Riyadh, M.; Wali, S.Q.; Li, L.; Osman, A.F. Machine Learning Modeling for Radiofrequency Electromagnetic Fields (RF-EMF) Signals From mmWave 5G Signals. IEEE Access 2023, 11, 79648–79658. [Google Scholar] [CrossRef]
- Li, J.; Cai, R.; Chen, H.; Ma, B.; Wu, Q.; Li, M. Deep neural network-enabled multifunctional switchable terahertz metamaterial devices. Sci. Rep. 2024, 14, 19868. [Google Scholar] [CrossRef]
- Lambrechts, J.W.; Sinha, S.; Sengupta, K.; Bimana, A.; Kadam, S.; Bhandari, S.; Preez, J.D.; Shao, Z.; Huang, X.; Liu, Z.; et al. Intelligent Integrated Circuits and Systems for 5G/6G Telecommunications. IEEE Access 2024, 12, 21402–21419. [Google Scholar] [CrossRef]
- Wu, M.; Wu, L.; Tao, J. Recent Progress and Comment on Metasurface Devices based on Two-photon 3D Printing. Study Opt. Commun. 2024, 18, 11–31. [Google Scholar] [CrossRef]
- Amjad, B.; Ahmed, Q.Z.; Lazaridis, P.I.; Khan, F.A.; Hafeez, M.; Zaharis, Z.D. Deep Learning Approach for Optimal Localization Using an mm-Wave Sensor. IEEE Trans. Instrum. Meas. 2023, 72, 1–15. [Google Scholar] [CrossRef]
- Chen, K.M.; Chang, H.Y.; Chang, R.Y.; Chung, W.H. Deep Unfolded Hybrid Beamforming in Reconfigurable Intelligent Surface Aided mmWave MIMO-OFDM Systems. IEEE Wirel. Commun. Lett. 2024, 13, 1118–1122. [Google Scholar] [CrossRef]
- Na, W.; Kim, N.; Dao, N.N.; Cho, S. Machine Learning-Based Communication Failure Identification Scheme for Directional Industrial IoT Networks. IEEE Syst. J. 2023, 17, 1559–1568. [Google Scholar] [CrossRef]
- Wei, J.; Chen, W.; Gong, Y.; Wu, Q.; Lu, G.; Gao, W.; Wang, L.; Li, M.; Wang, H. Highly Efficient Automatic Synthesis of a Millimeter-Wave On-Chip Deformable Spiral Inductor Using a Hybrid Knowledge-Guided and Data-Driven Technique. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 4413–4422. [Google Scholar] [CrossRef]
- Lim, B.; Yun, W.J.; Kim, J.; Ko, Y.C. Joint User Clustering, Beamforming, and Power Allocation for mmWave-NOMA with Imperfect SIC. IEEE Trans. Wirel. Commun. 2024, 23, 2025–2038. [Google Scholar] [CrossRef]
- Shafique, K.; Alhassoun, M. Going Beyond a Simple RIS: Trends and Techniques Paving the Path of Future RIS. IEEE Open J. Antennas Propag. 2024, 5, 256–276. [Google Scholar] [CrossRef]
- Lawrence, N.P.; Ng, B.W.H.; Hansen, H.J.; Abbott, D. 5G Terrestrial Networks: Mobility and Coverage—Solution in Three Dimensions. IEEE Access 2017, 5, 8064–8093. [Google Scholar] [CrossRef]
- Abd, R.I.; Findley, D.J.; Kim, K.S. Hydra-RAN Perceptual Networks Architecture: Dual-Functional Communications and Sensing Networks for 6G and Beyond. IEEE Access 2024, 12, 2162–2185. [Google Scholar] [CrossRef]
- Kibria, M.G.; Nguyen, K.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks. IEEE Access 2018, 6, 32328–32338. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, B.; You, C.; Zhu, L.; Shen, K.; Shao, X.; Mei, W.; Di, B.; Zhang, H.; Basar, E.; et al. Intelligent Surfaces Empowered Wireless Network: Recent Advances and the Road to 6G. Proc. IEEE 2024, 112, 724–763. [Google Scholar] [CrossRef]
- Wu, N.; Jia, Y.; Qian, C.; Chen, H. Pushing the Limits of Metasurface Cloak Using Global Inverse Design. Adv. Opt. Mater. 2023, 11, 2202130. [Google Scholar] [CrossRef]
- Qiu, H.; Fang, L.; Xi, R.; Mu, Y.; Xia, D.; Zhang, Y.; Ma, S.; Han, J.; Feng, Q.; Li, Y.; et al. Wideband High Gain Lens Antenna Based on Deep Learning Assisted Near-zero Refractive Index Metamaterial. Prog. Electromagn. Res. 2025, 182, 13–25. [Google Scholar] [CrossRef]
- Zhu, S.k.; Zheng, Z.h.; Meng, W.; Chang, S.s.; Tan, Y.; Chen, L.J.; Fang, X.; Gu, M.; Chen, J.h. Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light field sensors. PhotoniX 2023, 4, 26. [Google Scholar] [CrossRef]
- Wu, O.; Qian, C.; Fan, Z.; Zhu, X.; Chen, H. General Characterization of Intelligent Metasurfaces with Graph Coupling Network. Laser Photonics Rev. 2025, 19, 2400979. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.C.; Xia, M.; Wang, R.; Poor, H.V. Machine Intelligence at the Edge with Learning Centric Power Allocation. IEEE Trans. Wirel. Commun. 2020, 19, 7293–7308. [Google Scholar] [CrossRef]
- Yu, J.T.; Tseng, Y.H.; Tseng, P.H. A mmWave MIMO Radar-Based Gesture Recognition Using Fusion of Range, Velocity, and Angular Information. IEEE Sens. J. 2024, 24, 9124–9134. [Google Scholar] [CrossRef]
- Benelmir, R.; Bitam, S.; Fowler, S.; Mellouk, A. A Novel mmWave Beam Alignment Approach for Beyond 5G Autonomous Vehicle Networks. IEEE Trans. Veh. Technol. 2024, 73, 1597–1610. [Google Scholar] [CrossRef]
- Tian, M.; Zhang, Z.; Xu, Q.; Yang, L. A Personalized Solution for Deep Learning-Based mmWave Beam Selection. IEEE Wirel. Commun. Lett. 2023, 12, 183–186. [Google Scholar] [CrossRef]
- Shen, L.H.; Feng, K.T.; Lee, T.S.; Lin, Y.C.; Lin, S.C.; Chang, C.C.; Chang, S.F. AI-Enabled Unmanned Vehicle-Assisted Reconfigurable Intelligent Surfaces: Deployment, Prototyping, Experiments, and Opportunities. IEEE Netw. 2024, 38, 289–299. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Zhang, X.; Li, C.; Huang, Y.; Yang, L. Backdoor Federated Learning-Based mmWave Beam Selection. IEEE Trans. Commun. 2022, 70, 6563–6578. [Google Scholar] [CrossRef]
- Kazemi, P.; Al-Tous, H.; Ponnada, T.; Studer, C.; Tirkkonen, O. Beam SNR Prediction Using Channel Charting. IEEE Trans. Veh. Technol. 2023, 72, 13130–13145. [Google Scholar] [CrossRef]
- Yao, G.; Hashemi, M.; Singh, R.; Shroff, N.B. Delay-Optimal Scheduling for Integrated mmWave—Sub-6 GHz Systems with Markovian Blockage Model. IEEE Trans. Mob. Comput. 2023, 22, 5124–5139. [Google Scholar] [CrossRef]
- Fallah Dizche, A.; Duel-Hallen, A.; Hallen, H. Early Warning of mmWave Signal Blockage Using Diffraction Properties and Machine Learning. IEEE Commun. Lett. 2022, 26, 2944–2948. [Google Scholar] [CrossRef]
- Gendia, A.; Muta, O.; Hashima, S.; Hatano, K. Energy-Efficient Trajectory Planning with Joint Device Selection and Power Splitting for mmWaves-Enabled UAV-NOMA Networks. IEEE Trans. Mach. Learn. Commun. Netw. 2024, 2, 617–632. [Google Scholar] [CrossRef]
- López-Ramírez, G.A.; Aragón-Zavala, A.; Vargas-Rosales, C. Exploratory Data Analysis for Path Loss Measurements: Unveiling Patterns and Insights Before Machine Learning. IEEE Access 2024, 12, 62279–62295. [Google Scholar] [CrossRef]
- Salehi, B.; Roy, D.; Gu, J.; Dick, C.; Chowdhury, K. FLASH-and-Prune: Federated Learning for Automated Selection of High-Band mmWave Sectors using Model Pruning. IEEE Trans. Mob. Comput. 2024, 23, 11655–11669. [Google Scholar] [CrossRef]
- He, S.; Xiong, S.; Zhang, W.; Yang, Y.; Ren, J.; Huang, Y. GBLinks: GNN-Based Beam Selection and Link Activation for Ultra-Dense D2D mmWave Networks. IEEE Trans. Commun. 2022, 70, 3451–3466. [Google Scholar] [CrossRef]
- Raeisi, M.; Sesay, A.B. Handover Reduction in 5G High-Speed Network Using ML-Assisted User-Centric Channel Allocation. IEEE Access 2023, 11, 84113–84133. [Google Scholar] [CrossRef]
- Artificial Intelligence for the Internet of Everything. Available online: https://shop.elsevier.com/books/artificial-intelligence-for-the-internet-of-everything/lawless/978-0-12-817636-8 (accessed on 18 November 2024).
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Nor, A.M.; Halunga, S.; Fratu, O. Survey on positioning information assisted mmWave beamforming training. Ad Hoc Netw. 2022, 135, 102947. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, G.; Ge, H.; Wang, F.; Li, L.; Chen, X.; Lu, M.; Zhang, Y. Machine Learning and Application in Terahertz Technology: A Review on Achievements and Future Challenges. IEEE Access 2022, 10, 53761–53776. [Google Scholar] [CrossRef]
- Khan, M.M.; Hossain, S.; Mozumdar, P.; Akter, S.; Ashique, R.H. A review on machine learning and deep learning for various antenna design applications. Heliyon 2022, 8, e09317. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.; Pandya, R.J.; Bhatia, V.; Lopez, O.A. Qualitative Survey on Artificial Intelligence Integrated Blockchain Approach for 6G and Beyond. IEEE Access 2023, 11, 105935–105981. [Google Scholar] [CrossRef]
- Roy, D.; Salehi, B.; Banou, S.; Mohanti, S.; Reus-Muns, G.; Belgiovine, M.; Ganesh, P.; Dick, C.; Chowdhury, K. Going beyond RF: A survey on how AI-enabled multimodal beamforming will shape the NextG standard. Comput. Netw. 2023, 228, 109729. [Google Scholar] [CrossRef]
- Thillaigovindhan, S.K.; Roslee, M.; Mitani, S.M.I.; Osman, A.F.; Ali, F.Z. A Comprehensive Survey on Machine Learning Methods for Handover Optimization in 5G Networks. Electronics 2024, 13, 3223. [Google Scholar] [CrossRef]
- Drampalou, S.F.; Uzunidis, D.; Vetsos, A.; Miridakis, N.I.; Karkazis, P. A User-Centric Perspective of 6G Networks: A Survey. IEEE Access 2024, 12, 190255–190294. [Google Scholar] [CrossRef]
- Chukhno, N.; Chukhno, O.; Moltchanov, D.; Pizzi, S.; Gaydamaka, A.; Samuylov, A.; Molinaro, A.; Koucheryavy, Y.; Iera, A.; Araniti, G. Models, Methods, and Solutions for Multicasting in 5G/6G mmWave and Sub-THz Systems. IEEE Commun. Surv. Tutor. 2024, 26, 119–159. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Maraqa, O.; Moualeu, J.M.; Aboagye, S.; Ngatched, T.M.N.; Ahmed, M.H.; Gadallah, Y.; Renzo, M.D. RIS-Assisted Physical Layer Security in Emerging RF and Optical Wireless Communication Systems: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2024, 27, 2156–2203. [Google Scholar] [CrossRef]
- Kong, H.; Huang, C.; Yu, J.; Shen, X. A Survey of mmWave Radar-Based Sensing in Autonomous Vehicles, Smart Homes and Industry. IEEE Commun. Surv. Tutor. 2025, 27, 463–508. [Google Scholar] [CrossRef]
- Kouhalvandi, L.; Karamzadeh, S. Advances in Non-Contact Human Vital Sign Detection: A Detailed Survey of Radar and Wireless Solutions. IEEE Access 2025, 13, 27833–27851. [Google Scholar] [CrossRef]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Berry, M.W.; Mohamed, A.; Yap, B.W. Supervised and Unsupervised Learning for Data Science, 1st ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Aggarwal, C. Convolutional Neural Networks. In Neural Networks and Deep Learning: A Textbook; Springer International Publishing: Cham, Switzerland, 2023; pp. 305–360. [Google Scholar] [CrossRef]
- Scholes, M.S. Artificial intelligence and uncertainty. Risk Sci. 2025, 1, 100004. [Google Scholar] [CrossRef]
- Du, J.; Jiang, C.; Wang, J.; Ren, Y.; Debbah, M. Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service. IEEE Veh. Technol. Mag. 2020, 15, 122–134. [Google Scholar] [CrossRef]
- Cousik, T.S.; Shah, V.K.; Erpek, T.; Sagduyu, Y.E.; Reed, J.H. Deep Learning for Fast and Reliable Initial Access in AI-Driven 6G mm Wave Networks. IEEE Trans. Netw. Sci. Eng. 2022, 11, 5668–5680. [Google Scholar] [CrossRef]
- Pihlajasalo, J.; Korpi, D.; Honkala, M.; Huttunen, J.M.J.; Riihonen, T.; Talvitie, J.; Brihuega, A.; Uusitalo, M.A.; Valkama, M. Deep Learning OFDM Receivers for Improved Power Efficiency and Coverage. IEEE Trans. Wirel. Commun. 2023, 22, 5518–5535. [Google Scholar] [CrossRef]
- Catak, F.O.; Kuzlu, M.; Catak, E.; Cali, U.; Unal, D. Security concerns on machine learning solutions for 6G networks in mmWave beam prediction. Phys. Commun. 2022, 52, 101626. [Google Scholar] [CrossRef]
- Santana, Y.H.; Martinez Alonso, R.; Guillen Nieto, G.; Martens, L.; Joseph, W.; Plets, D. 5G mmWave Network Planning Using Machine Learning for Path Loss Estimation. IEEE Open J. Commun. Soc. 2024, 5, 3451–3467. [Google Scholar] [CrossRef]
- Rasti, M.; Taskou, S.K.; Tabassum, H.; Hossain, E. Evolution Toward 6G Multi-Band Wireless Networks: A Resource Management Perspective. IEEE Wirel. Commun. 2022, 29, 118–125. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, H.; Marine, G.; Wu, H. 6G IoV Networks Driven by RF Digital Twin Modeling. IEEE Trans. Intell. Transp. Syst. 2024, 25, 2976–2986. [Google Scholar] [CrossRef]
- Khan, M.Q.; Gaber, A.; Parvini, M.; Schulz, P.; Fettweis, G. A Low-Complexity Machine Learning Design for mmWave Beam Prediction. IEEE Wirel. Commun. Lett. 2024, 13, 1551–1555. [Google Scholar] [CrossRef]
- Cai, H.; Hu, S.; Huang, X.; Shen, Y. 110–170 GHz On-Chip Calibration Using Deep Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 2057–2066. [Google Scholar] [CrossRef]
- Nouri, M.; Jafarieh, A.; Behroozi, H.; Mallat, N.K.; Iqbal, A.; Piran, M.J.; Lee, D. A Compact Filter and Dipole Antenna with Its Phased Array Filtenna and ADMM-BO Learning for Use-Case Analog/Hybrid Beamforming in 5G mmWave Communications. IEEE Access 2023, 11, 55990–56007. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, K.K. A Deep Learning Framework for Beam Selection and Power Control in Massive MIMO-Millimeter-Wave Communications. IEEE Trans. Mob. Comput. 2023, 22, 4374–4387. [Google Scholar] [CrossRef]
- Fu, Z.; Zhang, Y.; Zhao, X.; Wang, X.; Geng, S. A DNN-Based Channel State and Scenario Identifications for Millimeter-Wave Communications. IEEE Trans. Veh. Technol. 2023, 72, 8088–8093. [Google Scholar] [CrossRef]
- Yue, C.; Tang, H.; Yang, J.; Chai, L. A generalized CNN model with automatic hyperparameter tuning for millimeter wave channel prediction. J. Commun. Netw. 2023, 25, 469–479. [Google Scholar] [CrossRef]
- Lavdas, S.; Gkonis, P.K.; Zinonos, Z.; Trakadas, P.; Sarakis, L.; Papadopoulos, K. A Machine Learning Adaptive Beamforming Framework for 5G Millimeter Wave Massive MIMO Multicellular Networks. IEEE Access 2022, 10, 91597–91609. [Google Scholar] [CrossRef]
- He, H.; Wang, R.; Jin, W.; Jin, S.; Wen, C.K.; Li, G.Y. Beamspace Channel Estimation for Wideband Millimeter-Wave MIMO: A Model-Driven Unsupervised Learning Approach. IEEE Trans. Wirel. Commun. 2023, 22, 1808–1822. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, C.; Cui, K.; Han, J.; Xu, X.; Ren, K. Behavior Privacy Preserving in RF Sensing. IEEE Trans. Dependable Secur. Comput. 2023, 20, 784–796. [Google Scholar] [CrossRef]
- Loscrí, V.; Rizza, C.; Benslimane, A.; Vegni, A.M.; Innocenti, E.; Giuliano, R. BEST-RIM: A mmWave Beam Steering Approach Based on Computer Vision-Enhanced Reconfigurable Intelligent Metasurfaces. IEEE Trans. Veh. Technol. 2023, 72, 7613–7626. [Google Scholar] [CrossRef]
- Chukhno, N.; Chukhno, O.; Pizzi, S.; Molinaro, A.; Iera, A.; Araniti, G. Beyond Complexity Limits: Machine Learning for Sidelink-Assisted mmWave Multicasting in 6G. IEEE Trans. Broadcast. 2024, 70, 1076–1090. [Google Scholar] [CrossRef]
- Lei, W.; Lu, C.; Huang, Y.; Rao, J.; Xiao, M.; Skoglund, M. Adaptive Beam Sweeping with Supervised Learning. IEEE Wirel. Commun. Lett. 2022, 11, 2650–2654. [Google Scholar] [CrossRef]
- Wu, S.; Alrabeiah, M.; Chakrabarti, C.; Alkhateeb, A. Blockage Prediction Using Wireless Signatures: Deep Learning Enables Real-World Demonstration. IEEE Open J. Commun. Soc. 2022, 3, 776–796. [Google Scholar] [CrossRef]
- Sonny, A.; Kumar, A.; Cenkeramaddi, L.R. Carry Object Detection Utilizing mmWave Radar Sensors and Ensemble-Based Extra Tree Classifiers on the Edge Computing Systems. IEEE Sens. J. 2023, 23, 20137–20149. [Google Scholar] [CrossRef]
- Tedeschini, B.C.; Nicoli, M. Cooperative Deep-Learning Positioning in mmWave 5G-Advanced Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3799–3815. [Google Scholar] [CrossRef]
- Rostampoor, J.; Adve, R.S.; Afana, A.; Ahmed, Y.A.E. CPRL: Change Point Detection and Reinforcement Learning to Optimize Cache Placement Strategies. IEEE Trans. Commun. 2024, 72, 2339–2353. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhang, X.; El-Hajjar, M.; Yang, L.L. Deep Learning Assisted Adaptive Index Modulation for mmWave Communications with Channel Estimation. IEEE Trans. Veh. Technol. 2022, 71, 9186–9201. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Yang, X.; Shi, H.; Shi, B.; Du, R. Deep Learning Based Joint Hybrid Precoding and Combining Design for mmWave MIMO Systems. IEEE Syst. J. 2024, 18, 560–567. [Google Scholar] [CrossRef]
- Thng, G.H.; Jaward, M.H.; Bakaul, M. Deep Learning Based Phase Noise Tolerant Radio-Over-Fiber Receiver. J. Light. Technol. 2022, 40, 7727–7737. [Google Scholar] [CrossRef]
- Qi, C.; Wang, Y.; Li, G.Y. Deep Learning for Beam Training in Millimeter Wave Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2020, 1. [Google Scholar] [CrossRef]
- Thushan, S.; Ali, S.; Mahmood, N.H.; Rajatheva, N.; Latva-Aho, M. Deep Learning-Based Blind Multiple User Detection for Grant-Free SCMA and MUSA Systems. IEEE Trans. Mach. Learn. Commun. Netw. 2023, 1, 61–77. [Google Scholar] [CrossRef]
- Huang, H.; Gui, G.; Gacanin, H.; Yuen, C.; Sari, H.; Adachi, F. Deep Regularized Waveform Learning for Beam Prediction with Limited Samples in Non-Cooperative mmWave Systems. IEEE Trans. Veh. Technol. 2023, 72, 9614–9619. [Google Scholar] [CrossRef]
- Saifaldeen, D.A.; Al-Baseer, A.M.; Ciftler, B.S.; Abdallah, M.M.; Qaraqe, K.A. DRL-Based IRS-Assisted Secure Hybrid Visible Light and mmWave Communications. IEEE Open J. Commun. Soc. 2024, 5, 3007–3020. [Google Scholar] [CrossRef]
- Sonny, A.; Kumar, A.; Cenkeramaddi, L.R. Dynamic Targets Occupancy Status Detection Utilizing mmWave Radar Sensor and Ensemble Machine Learning. IEEE Open J. Ind. Electron. Soc. 2024, 5, 251–263. [Google Scholar] [CrossRef]
- Ali, A.; Parida, P.; Va, V.; Ni, S.; Nguyen, K.N.; Ng, B.L.; Zhang, J.C. End-to-End Dynamic Gesture Recognition Using MmWave Radar. IEEE Access 2022, 10, 88692–88706. [Google Scholar] [CrossRef]
- Wu, T.; Pan, C.; Pan, Y.; Ren, H.; Elkashlan, M.; Wang, C.X. Fingerprint-Based mmWave Positioning System Aided by Reconfigurable Intelligent Surface. IEEE Wirel. Commun. Lett. 2023, 12, 1379–1383. [Google Scholar] [CrossRef]
- Jin, B.; Ma, X.; Hu, B.; Zhang, Z.; Lian, Z.; Wang, B. Gesture-mmWAVE: Compact and Accurate Millimeter-Wave Radar-Based Dynamic Gesture Recognition for Embedded Devices. IEEE Trans. Hum.-Mach. Syst. 2024, 54, 337–347. [Google Scholar] [CrossRef]
- Pratap Singh, Y.; Gupta, A.; Chaudhary, D.; Wajid, M.; Srivastava, A.; Mahajan, P. Hardware Deployable Edge AI Solution for Posture Classification Using mmWave Radar and Low- Computational Machine Learning Model. IEEE Sens. J. 2024, 24, 26836–26844. [Google Scholar] [CrossRef]
- Nouri, M.; Behroozi, H.; Bastami, H.; Moradikia, M.; Jafarieh, A.; Abdelhadi, A.; Han, Z. Hybrid Precoding Based on Active Learning for mmWave Massive MIMO Communication Systems. IEEE Trans. Commun. 2023, 71, 3043–3058. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, L.; Zhang, L.; Huang, Y.; Zhang, W. Incremental Collaborative Beam Alignment for Millimeter Wave Cell-Free MIMO Systems. IEEE Trans. Commun. 2023, 71, 6377–6390. [Google Scholar] [CrossRef]
- Al-Quraan, M.M.; Khan, A.R.; Mohjazi, L.; Centeno, A.; Zoha, A.; Imran, M.A. Intelligent Beam Blockage Prediction for Seamless Connectivity in Vision-Aided Next-Generation Wireless Networks. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1937–1948. [Google Scholar] [CrossRef]
- Wang, R.; Yang, C.; Han, S.; Wu, J.; Han, S.; Wang, X. Learning End-to-End Hybrid Precoding for Multi-User mmWave Mobile System with GNNs. IEEE Trans. Mach. Learn. Commun. Netw. 2024, 2, 978–993. [Google Scholar] [CrossRef]
- Jiang, S.; Charan, G.; Alkhateeb, A. LiDAR Aided Future Beam Prediction in Real-World Millimeter Wave V2I Communications. IEEE Wirel. Commun. Lett. 2023, 12, 212–216. [Google Scholar] [CrossRef]
- Shah, S.H.A.; Rangan, S. LSTM-Aided Selective Beam Tracking in Multi-Cell Scenario for mmWave Wireless Systems. IEEE Trans. Wirel. Commun. 2024, 23, 890–907. [Google Scholar] [CrossRef]
- Chen, B.J.; Tsai, Y.T.; Yang, S.Y.; Liao, S.M.; Hsu, C.M.; Huang, C.C.; Liao, K.C.; Chen, S.Y. Dynamic Programming-Based Beam Codebook Design for mmWave Multi-antenna Module in Mobile Devices. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Dreifuerst, R.M.; Heath, R.W. Machine Learning Codebook Design for Initial Access and CSI Type-II Feedback in Sub-6-GHz 5G NR. IEEE Trans. Wirel. Commun. 2024, 23, 6411–6424. [Google Scholar] [CrossRef]
- Yan, W.; Sun, G.; Hao, W.; Zhu, Z.; Chu, Z.; Xiao, P. Machine Learning-Based Beamforming Design for Millimeter Wave IRS Communications with Discrete Phase Shifters. IEEE Wirel. Commun. Lett. 2022, 11, 2467–2471. [Google Scholar] [CrossRef]
- Gupta, A.; Du, J.; Chizhik, D.; Valenzuela, R.A.; Sellathurai, M. Machine Learning-Based Urban Canyon Path Loss Prediction Using 28 GHz Manhattan Measurements. IEEE Trans. Antennas Propag. 2022, 70, 4096–4111. [Google Scholar] [CrossRef]
- Ahn, H.; Orikumhi, I.; Kang, J.; Park, H.; Jwa, H.; Na, J.; Kim, S. Machine Learning-Based Vision-Aided Beam Selection for mmWave Multiuser MISO System. IEEE Wirel. Commun. Lett. 2022, 11, 1263–1267. [Google Scholar] [CrossRef]
- Bhat, J.R.; Alqahtani, S.A. 6G Ecosystem: Current Status and Future Perspective. IEEE Access 2021, 9, 43134–43167. [Google Scholar] [CrossRef]
- Khan, L.U.; Yaqoob, I.; Imran, M.; Han, Z.; Hong, C.S. 6G Wireless Systems: A Vision, Architectural Elements, and Future Directions. IEEE Access 2020, 8, 147029–147044. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Ma, X.; Chen, W. Channel Estimation for Intelligent Reflecting Surface Enabled Terahertz MIMO Systems: A Deep Learning Perspective. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Online, 9–11 August 2020; pp. 75–79. [Google Scholar] [CrossRef]
- Chaccour, C.; Saad, W.; Debbah, M.; Poor, H.V. Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User Experiences. IEEE Trans. Wirel. Commun. 2024, 23, 11444–11460. [Google Scholar] [CrossRef]
- Zarini, H.; Gholipoor, N.; Mili, M.R.; Rasti, M.; Tabassum, H.; Hossain, E. Liquid State Machine-Empowered Reflection Tracking in RIS-Aided THz Communications. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5273–5278. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Wang, R.; Zhang, L. THz Signal Identification for Intelligent Characterization Under High-Resolution Mode based on RFECNet. In Proceedings of the 2023 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 2–4 November 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Qian, C.; Zhang, J.; Jia, Y.; Chen, H. Correlating metasurface spectra with a generation-elimination framework. Nat. Commun. 2023, 14, 4872. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Q.; Zhao, D.; Feng, J. Intelligent Forward-Wave Amplifier Design with Deep Learning and Genetic Algorithm. IEEE Trans. Electron Devices 2021, 68, 3568–3575. [Google Scholar] [CrossRef]
- Kishore, K.K.; Suman, J.V.; Mallam, M.; Hema, M.; Guntreddi, V. Scrambled UFMC and OFDM Techniques with APSK Modulation in 5G Networks Using Particle Swarm Optimization. IEEE Access 2024, 12, 104091–104101. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, X.; Wu, T.; Qiu, Y. A Routing Algorithm for Underwater Acoustic– Optical Hybrid Wireless Sensor Networks Based on Intelligent Ant Colony Optimization and Energy-Flexible Global Optimal Path Selection. IEEE Sens. J. 2024, 24, 17116–17126. [Google Scholar] [CrossRef]
- Ye, B.; Hu, J.; Zha, W.; Wang, B.; Gao, Q.; Fang, G.; Dwivedi, A.K.; Liu, S. A Novel Magnetic Spiral Capsule Endoscope Localization Method Based on an Improved Artificial Bee Colony Algorithm. IEEE Sens. J. 2024, 24, 1740–1750. [Google Scholar] [CrossRef]
- Li, T.; Yang, F.; Zhang, D.; Zhai, L. Computation Scheduling of Multi-Access Edge Networks Based on the Artificial Fish Swarm Algorithm. IEEE Access 2021, 9, 74674–74683. [Google Scholar] [CrossRef]
- Cai, Z.; Jiang, S.; Dong, J.; Tang, S. An Artificial Plant Community Algorithm for the Accurate Range-Free Positioning of Wireless Sensor Networks. Sensors 2023, 23, 2804. [Google Scholar] [CrossRef] [PubMed]
- Osamy, W.; El-Sawy, A.A.; Salim, A. CSOCA: Chicken Swarm Optimization Based Clustering Algorithm for Wireless Sensor Networks. IEEE Access 2020, 8, 60676–60688. [Google Scholar] [CrossRef]
- Li, F.; Ji, W.; Tan, S.; Xie, Y.; Guo, X.; Liu, H.; Yao, Y. Quantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open J. Commun. Soc. 2020, 1, 1632–1646. [Google Scholar] [CrossRef]
- Le, T.A.; Yang, X.S. Generalized Firefly Algorithm for Optimal Transmit Beamforming. IEEE Trans. Wirel. Commun. 2024, 23, 5863–5877. [Google Scholar] [CrossRef]
- Bhatt, R.; Maheshwary, P.; Shukla, P.; Shukla, P.; Shrivastava, M.; Changlani, S. Implementation of Fruit Fly Optimization Algorithm (FFOA) to escalate the attacking efficiency of node capture attack in Wireless Sensor Networks (WSN). Comput. Commun. 2020, 149, 134–145. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Sun, M.; Song, Z.; Tian, H. Wide Stopband and High Isolation Balanced Diplexer Using Asymmetric Hairpin Ring Resonator Aided by Grey Wolf Algorithm. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 2931–2935. [Google Scholar] [CrossRef]
- Edla, D.R.; Lipare, A.; Cheruku, R.; Kuppili, V. An Efficient Load Balancing of Gateways Using Improved Shuffled Frog Leaping Algorithm and Novel Fitness Function for WSNs. IEEE Sens. J. 2017, 17, 6724–6733. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y. Coverage and Routing Optimization of Wireless Sensor Networks Using Improved Cuckoo Algorithm. IEEE Access 2024, 12, 39564–39577. [Google Scholar] [CrossRef]
- Shao, Z.; Qiu, L.F.; Zhang, Y.P. Design of Wideband Differentially Fed Multilayer Stacked Patch Antennas Based on Bat Algorithm. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1172–1176. [Google Scholar] [CrossRef]
- Omari, M.; Kaddi, M.; Salameh, K.; Alnoman, A.; Elfatmi, K.; Baarab, F. Enhancing Node Localization Accuracy in Wireless Sensor Networks: A Hybrid Approach Leveraging Bounding Box and Harmony Search. IEEE Access 2024, 12, 86752–86781. [Google Scholar] [CrossRef]
- Ram, G.; Pal, P.S.; Mandal, D.; Kar, R.; Ghosal, S.P. Social emotional optimization algorithm for beamforming of linear antenna arrays. In Proceedings of the TENCON 2014—2014 IEEE Region 10 Conference, Bangkok, Thailand, 22–25 October 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Tamilarasan, N.; Lenin, S.B.; Mukunthan, P.; Sendhilkumar, N.C. Stochastic ranking improved teaching-learning and adaptive grasshopper optimization algorithm-based clustering scheme for augmenting network lifetime in WSNs. China Commun. 2024, 21, 159–178. [Google Scholar] [CrossRef]
- Kam, G.; Chung, K. Guided-Mutation Genetic Algorithm for Mobile IoT Network Relay. IEEE Access 2024, 12, 103720–103734. [Google Scholar] [CrossRef]
- Tijani, I.; Zayed, T. Gene expression programming based mathematical modeling for leak detection of water distribution networks. Measurement 2022, 188, 110611. [Google Scholar] [CrossRef]
- Gonzaga Ferreira, M.V.; Teles Vieira, F.H.; Felix, J.P.; de Souza, D.F.; Pereira Franco, R.A. Application of Evolutionary Algorithm to Allocate Resources in Wireless Networks with Carrier Aggregation. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Jang, J.Y.; Seo, B.; Hwang, Y.J. Optimal Design Method of a Wireless Charging System for HTS Magnets Using a Genetic Algorithm. IEEE Trans. Appl. Supercond. 2024, 34, 1–6. [Google Scholar] [CrossRef]
- Gan, X.; Sun, J.; Gong, D.; Jia, D.; Dai, H.; Zhong, Z. An Adaptive Reference Vector-Based Interval Multiobjective Evolutionary Algorithm. IEEE Trans. Evol. Comput. 2023, 27, 1235–1249. [Google Scholar] [CrossRef]
- de Brito, J.A.G.; Totte, D.R.M.; Silva, F.O.; Junior, J.R.d.P.; Henriques, F.d.R.; Tarrataca, L.; Haddad, D.B.; de Assis, L.S. Memetic algorithm applied to topology control optimization of a wireless sensor network. Wirel. Netw. 2022, 28, 3677–3697. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.R.; Huang, P.Q.; Wang, K. A new differential evolution algorithm for joint mining decision and resource allocation in a MEC-enabled wireless blockchain network. Comput. Ind. Eng. 2021, 155, 107186. [Google Scholar] [CrossRef]
- de Lacy, N.; Ramshaw, M.J.; Kutz, J.N. Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning. Front. Artif. Intell. 2022, 5. [Google Scholar] [CrossRef]
- Alsaleh, S.S.; El Bachir Menai, M.; Al-Ahmadi, S. Federated Learning-Based Model to Lightweight IDSs for Heterogeneous IoT Networks: State-of-the-Art, Challenges, and Future Directions. IEEE Access 2024, 12, 134256–134272. [Google Scholar] [CrossRef]
- Kouhalvandi, L.; Matekovits, L. Hyperparameter Optimization of Long Short-Term Memory-Based Forecasting DNN for Antenna Modeling Through Stochastic Methods. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 725–729. [Google Scholar] [CrossRef]
- Nguyen, D.T.A.; Joung, J.; Kang, X. Deep Gated Recurrent Unit-Based 3D Localization for UWB Systems. IEEE Access 2021, 9, 68798–68813. [Google Scholar] [CrossRef]
- Li, L. Recognizing Polyps in Wireless Endoscopy Images Using Deep Stacked Auto Encoder with Constraint Image Model in Flexible Medical Sensor Platform. IEEE Access 2020, 8, 60653–60663. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, B.; Xu, S.; Chen, B.; Li, M.; Jiang, B. Feature Fusion Using Stacked Denoising Auto-Encoder and GBDT for Wi-Fi Fingerprint-Based Indoor Positioning. IEEE Access 2020, 8, 114741–114751. [Google Scholar] [CrossRef]
- Surekha, S.; Rahman, M.Z.U. Spectrum Sensing and Allocation Strategy for IoT Devices Using Continuous-Time Markov Chain-Based Game Theory Model. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Yao, C.; Yang, Y.; Yin, K.; Yang, J. Traffic Anomaly Detection in Wireless Sensor Networks Based on Principal Component Analysis and Deep Convolution Neural Network. IEEE Access 2022, 10, 103136–103149. [Google Scholar] [CrossRef]
- Kouhalvandi, L.; Aygun, S.; Matekovits, L.; Najafi, M.H. Radiation Pattern Extrapolation through Generative Adversarial Network. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Florence, Italy, 14–19 July 2024; pp. 679–680. [Google Scholar] [CrossRef]
- Yao, H.M.; Zhang, H.H.; Jiang, L.; Ng, M. Enhanced Deep Learning Approach for Electromagnetic Forward Modeling of Dielectric Target Within the Wide Frequency Band Using Deep Residual Convolutional Neural Network. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1884–1888. [Google Scholar] [CrossRef]
- Tarkowski, M.; Kulas, L. RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 561–565. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, K.; Meng, D. Probabilistic Approximation of Stochastic Time Series Using Bayesian Recurrent Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 11664–11671. [Google Scholar] [CrossRef]
- Huang, L.; Mao, S.; Zheng, W.; Tang, B.; Wang, H.; Wu, Q.; Tang, M.; Xu, Y. A Scalable ANN-Based Large-Signal Model for GaN HEMTs Using Transfer Learning. IEEE Microw. Wirel. Technol. Lett. 2025, 35, 501–504. [Google Scholar] [CrossRef]
- Wang, W.; Wu, H.; Yang, S.; Mei, X.; Han, D.; Marino, M.D.; Li, K.C. LNPP: Logical Neural Path Planning of Mobile Beacon for Ocean Sensor Networks in Uncertain Environments using Hierarchical Reinforcement Learning. IEEE Trans. Netw. Sci. Eng. 2025, 12, 2606–2621. [Google Scholar] [CrossRef]
- Duong, T.Q.; Nguyen, L.D.; Narottama, B.; Ansere, J.A.; Huynh, D.V.; Shin, H. Quantum-Inspired Real-Time Optimization for 6G Networks: Opportunities, Challenges, and the Road Ahead. IEEE Open J. Commun. Soc. 2022, 3, 1347–1359. [Google Scholar] [CrossRef]
- Duong, T.Q.; Ansere, J.A.; Narottama, B.; Sharma, V.; Dobre, O.A.; Shin, H. Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions. IEEE Open J. Veh. Technol. 2022, 3, 375–387. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Nguyen, X.T.; Jeong, S.G.; Van Chien, T.; Hanzo, L.; Hwang, W.J. Hybrid Quantum Convolutional Neural Network-Aided Pilot Assignment in Cell-Free Massive MIMO Systems. IEEE Trans. Veh. Technol. 2025, 1–6. [Google Scholar] [CrossRef]
- Innan, N.; Behera, B.K.; Al-Kuwari, S.; Farouk, A. QNN-VRCS: A Quantum Neural Network for Vehicle Road Cooperation Systems. IEEE Trans. Intell. Transp. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Behera, B.K.; Al-Kuwari, S.; Farouk, A. QSVM-QNN: Quantum Support Vector Machine Based Quantum Neural Network Learning Algorithm for Brain-Computer Interfacing Systems. IEEE Trans. Artif. Intell. 2025, 1–12. [Google Scholar] [CrossRef]
Ref | Year | Content Description of Each Survey |
---|---|---|
[35] | 2021 | Describing technologies for 6G wireless communications networks with focus on implementing AI methods at mm-wave and THz bandwidths |
[36] | 2022 | Summarizing mm-wave beamforming training schemes through the ML approaches |
[37] | 2022 | Summarizing THz detection, imaging techniques and ML methods |
[38] | 2022 | Explaining ML methods for antenna designs at mm-wave and THz bandwidths |
[39] | 2023 | Describing the AI-based methods used in blockchain approach at 6G and beyond |
[40] | 2023 | Presenting the beamforming techniques based on AI methods for mm-wave communications |
[41] | 2024 | Presenting the ML methods employed for handover optimizations in 5G networks |
[42] | 2024 | Providing blockchain-based method for dynamic spectrum sharing that can be applied at THz bandwidth by ML approaches |
[43] | 2024 | Describing optimizations for multicasting in mm-wave and sub-THz networks |
[44] | 2024 | Summarizing reconfigurable intelligent surface concept for optical systems |
[45] | 2025 | Providing a summary for mm-wave radar-based sensing approaches and applications in autonomous vehicles, smart homes, and industry |
This work | 2025 | (1) Summarizing AI-methods applied in mm-wave and THz bandwidths; (2) introducing types of ML methods for various applications; (3) describing the applications of AI technology at circuit level and/or system level; (4) presenting a future direction for the mm-wave- and THz-based systems with the help of various ML approaches. |
Ref. | Target(s) | Type of NN |
---|---|---|
[52] | Estimating the best beam for 6G networks in the fastest way | DNN |
[53] | Improving the network coverage in terms of furthest uplink distances | ML-based physical-layer receiver |
[54] | Presenting a mitigation approach for adversarial attacks in 6G networks | Adversarial learning with AI methods |
[55] | Predicting the path loss at 28 GHz for 5G networks | ML with GA methods |
[56] | Selecting network with subchannel allocation | Deep reinforcement learning |
[57] | Presenting energy-efficient method for 6G mobile network | ML-based method |
[58] | Estimating beam at mm-wave | ML-based method |
[59] | Presenting high-accuracy on-chip calibration method | Thru-reflect-line neural network |
[60] | Designing high-gain dipole antenna with its array filter-antenna at mm-wave frequencies | Alternating direction method of multipliers and Bayesian optimization |
[61] | Selecting the suitable beam | Long short-term memory (LSTM)-based DNN |
[62] | Identifying mm-wave channel states and scenarios | DNN |
[63] | Estimating mm-wave channel | CNN |
[64] | Generating suitable beamforming configurations with respect to spatial distribution of throughput demand | ML based on the k-nearest neighbors |
[65] | Predicting beam-space channel | DNN |
[66] | Erasing the behavior privacy in radio frequency signals | DNN |
[67] | Providing an effective beam steering functionality with the help of reconfigurable intelligent meta-surfaces | ML with GA |
[68] | A method for side link-assisted multiple-mode mmWave scheduling | ML |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouhalvandi, L.; Matekovits, L. On the Role of Artificial Intelligent Technology for Millimetre-Wave and Terahertz Applications. Sensors 2025, 25, 5502. https://doi.org/10.3390/s25175502
Kouhalvandi L, Matekovits L. On the Role of Artificial Intelligent Technology for Millimetre-Wave and Terahertz Applications. Sensors. 2025; 25(17):5502. https://doi.org/10.3390/s25175502
Chicago/Turabian StyleKouhalvandi, Lida, and Ladislau Matekovits. 2025. "On the Role of Artificial Intelligent Technology for Millimetre-Wave and Terahertz Applications" Sensors 25, no. 17: 5502. https://doi.org/10.3390/s25175502
APA StyleKouhalvandi, L., & Matekovits, L. (2025). On the Role of Artificial Intelligent Technology for Millimetre-Wave and Terahertz Applications. Sensors, 25(17), 5502. https://doi.org/10.3390/s25175502