Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. AFM Experiments
2.2. The Viscoelastic Properties of Subcellular Components
2.3. Modelling of Oocyte as a Solid-Layered Structure
2.4. Modelling of Oocyte Culture Medium as a Three-Phase Flow
3. Results
3.1. The Mechanical Characterization of Subcomponents of Oocyte
3.2. Validation of Oocyte Model I: Oocyte Passage Through Micropipette Neck
3.3. Validation of Oocyte Model II: Oocyte Transit Through Microfluidic Channel
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Câmara, D.R.; Kastelic, J.P.; Thundathil, J.C. Role of the Na+/K+-ATPase ion pump in male reproduction and embryo development. Reprod. Fertil. Dev. 2017, 29, 1457–1467. [Google Scholar] [CrossRef]
- Papi, M.; Brunelli, R.; Sylla, L.; Parasassi, T.; Monaci, M.; Maulucci, G.; Missori, M.; Arcovito, G.; Ursini, F.; De Spirito, M. Mechanical properties of zona pellucida hardening. Eur. Biophys. J. 2010, 39, 987–992. [Google Scholar] [CrossRef]
- Yanez, L.Z.; Han, J.; Behr, B.B.; Pera, R.A.R.; Camarillo, D.B. Human oocyte developmental potential is predicted by mechanical properties within hours after fertilization. Nat. Commun. 2016, 7, 10809–10821. [Google Scholar] [CrossRef]
- Joshi, Y.M. Linear viscoelasticity of physically aging soft glassy (Thixotropic) materials. Curr. Opin. Colloid Interface Sci. 2025, 76, 101896. [Google Scholar] [CrossRef]
- Ebner, T.; Moser, M.; Sommergruber, M.; Puchner, M.; Wiesinger, R.; Tews, G. Developmental competence of oocytes showing increased cytoplasmic viscosity. Hum. Reprod. 2003, 18, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.S.L.; Konstantopoulos, K. An analytical model for determining two-dimensional receptor-ligand kinetics. Biophys. J. 2011, 100, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, W.; He, W.; Xi, N.; Wang, Y.; Liu, L. Dynamic Model for Characterizing Contractile Behaviors and Mechanical Properties of a Cardiomyocyte. Biophys. J. 2018, 114, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Elliott, C.M.; Stinner, B.; Venkataraman, C. Modelling cell motility and chemotaxis with evolving surface finite elements. J. R. Soc. Interface 2012, 9, 3027–3044. [Google Scholar] [CrossRef]
- Pullarkat, P.A.; Fernández, P.A.; Ott, A. Rheological properties of the Eukaryotic cell cytoskeleton. Phys. Rep. 2007, 449, 29–53. [Google Scholar] [CrossRef]
- Wintner, O.; Hirsch-Attas, N.; Schlossberg, M.; Brofman, F.; Friedman, R.; Kupervaser, M.; Kitsberg, D.; Buxboim, A. A Unified Linear Viscoelastic Model of the Cell Nucleus Defines the Mechanical Contributions of Lamins and Chromatin. Adv. Sci. 2020, 7, 1901222. [Google Scholar] [CrossRef]
- Massou, S.; Vicente, F.N.; Wetzel, F.; Mehidi, A.; Strehle, D.; Leduc, C.; Voituriez, R.; Rossier, O.; Nassoy, P.; Giannone, G. Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nat. Cell Biol. 2020, 22, 1011–1023. [Google Scholar] [CrossRef]
- Shao, D.; Rappel, W.J.; Levine, H. Computational model for cell morphodynamics. Phys. Rev. Lett. 2010, 105, 108104. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Zhang, F.; Lü, S.; Sun, S.; Lü, D.; Long, M. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector. Biomech. Model. Mechanobiol. 2018, 17, 191–203. [Google Scholar] [CrossRef]
- Swift, J.; Ivanovska, I.L.; Buxboim, A.; Harada, T.; Dingal, P.C.D.P.; Pinter, J.; Pajerowski, J.D.; Spinler, K.R.; Shin, J.-W.; Tewari, M.; et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013, 341, 1240104. [Google Scholar] [CrossRef]
- Müller, S.J.; Weigl, F.; Bezold, C.; Bächer, C.; Albrecht, K.; Gekle, S. A hyperelastic model for simulating cells in flow. Biomech. Model. Mechanobiol. 2021, 20, 509–520. [Google Scholar] [CrossRef]
- Tartibi, M.; Liu, Y.; Liu, G.-Y.; Komvopoulos, K. Single-cell mechanics—An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells. Acta Biomater. 2015, 27, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, S.; Cheng, D.; Liu, Y.; Sun, M.; Zhao, Q.; Cui, M.; Zhao, X. The full model of micropipette aspiration of cells: A mesoscopic simulation. Acta Biomater. 2023, 157, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Benet, E.; Sridhar, S.L.; Abadie, J.; Piat, E.; Vernerey, F.J. Separating the contributions of zona pellucida and cytoplasm in the viscoelastic response of human oocytes. Acta Biomater. 2019, 85, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, J.; Dietzel, A.; Böl, M. Mechanical characterisation of oocytes—The influence of sample geometry on parameter identification. J. Mech. Behav. Biomed. Mater. 2018, 77, 764–775. [Google Scholar] [CrossRef]
- Boccaccio, A.; Lamberti, L.; Papi, M.; De Spirito, M.; Douet, C.; Goudet, G.; Pappalettere, C. A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida. Interface Focus 2014, 4, 20130066. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef]
- Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: Methods, theory and applications. Chem. Soc. Rev. 2020, 49, 5850–5884. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, D.; Huang, W.; Cheng, S.H. Characterizing mechanical properties of biological cells by microinjection. IEEE Trans. Nanobiosci. 2010, 9, 171–180. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, A.; Zheng, Z.C.; Wang, M.Z. Multiphase flow experiment and simulation for cells-on-a-chip devices. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 432–443. [Google Scholar] [CrossRef]
- Lyras, K.G.; Lee, J. Haemodynamic analysis using multiphase flow dynamics in tubular lesions. Comput. Methods Programs Biomed. 2022, 220, 106780. [Google Scholar] [CrossRef]
- Polenz, I.; Weitz, D.A.; Baret, J.C. Polyurea microcapsules in microfluidics: Surfactant control of soft membranes. Langmuir 2015, 31, 1127–1134. [Google Scholar] [CrossRef]
- Choi, C.H.; Wang, H.; Lee, H.; Kim, J.H.; Zhang, L.; Mao, A.; Mooney, D.J.; Weitz, D.A. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab A Chip 2016, 16, 1549–1555. [Google Scholar] [CrossRef]
- Kulkarni, S.G.; Pérez-Domínguez, S.; Radmacher, M. Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells. J. Mol. Recognit. 2023, 36, e3018. [Google Scholar] [CrossRef]
- Sharma, V.; Shi, X.; Yao, G.; Pharr, G.M.; Wu, J.Y. Surface characterization of an ultra-soft contact lens material using an atomic force microscopy nanoindentation method. Sci. Rep. 2022, 12, 20013. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, Y.; Zhang, S.; Cheng, D.; Liu, Y.; Zhao, Q.; Sun, M.; Cui, M.; Zhao, X. Mechanical Characterization and Modelling of Subcellular Components of Oocytes. Micromachines 2022, 13, 1087. [Google Scholar] [CrossRef] [PubMed]
- Grasland-Mongrain, P.; Zorgani, A.; Nakagawa, S.; Bernard, S.; Paim, L.G.; Fitzharris, G.; Catheline, S.; Cloutier, G. Ultrafast imaging of cell elasticity with optical microelastography. Proc. Natl. Acad. Sci. USA 2018, 115, 861–866. [Google Scholar] [CrossRef] [PubMed]
Parameter | Simulation | |
---|---|---|
ZP | Radius Young’s Modulus Poisson’s Ratio | 15 um 7 kPa 0.5 |
Cytoplasm | Radius Young’s Modulus Poisson’s Ratio | 75 um 1.55 kPa 0.5 |
Pipette | Inner Diameter External Diameter Young’s Modulus | 90 µm 108 µm 5.5 × 107 kPa |
Contact mode | ZP and Cytoplasm Pipette and ZP | Bonded Frictional Friction Coefficient 0.2 |
Strain Rate (1/s) | Stress (Pa) | Viscosity (Pa s) |
---|---|---|
0.00172 | 0.00213 | 969.1 |
0.00183 | 0.00214 | 940 |
0.00456 | 0.00217 | 467.8 |
0.006 | 0.00225 | 365.4 |
0.0107 | 0.00231 | 215 |
0.0119 | 0.00221 | 186.1 |
0.021 | 0.00256 | 125.8 |
0.0222 | 0.00274 | 124.7 |
0.0229 | 0.00289 | 121.9 |
0.0238 | 0.00245 | 102.8 |
0.0524 | 0.00462 | 44.1 |
Culture Medium Phase | ZP Phase | Cytoplasm Phase | |
---|---|---|---|
Density (kg/m3) | 1008 | 1047 | 1020 |
Viscosity (Pa s) | |||
Zero-shear viscosity (Pa s) | 4617.9 | 359.89 | |
Infinite-shear viscosity (Pa s) | 3.371 | 1.368 |
900 | 700 | 600 | 500 | 400 | 300 | 200 | |
---|---|---|---|---|---|---|---|
Experiment | 0.908 | 0.911 | 0.912 | 0.921 | 0.931 | 0.928 | 0.974 |
Simulation | 0.922 | 0.931 | 0.934 | 0.942 | 0.958 | 0.967 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Cai, Y.; Yang, Z.; Gao, K.; Sun, M.; Zhao, X. Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation. Sensors 2025, 25, 5479. https://doi.org/10.3390/s25175479
Du Y, Cai Y, Yang Z, Gao K, Sun M, Zhao X. Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation. Sensors. 2025; 25(17):5479. https://doi.org/10.3390/s25175479
Chicago/Turabian StyleDu, Yue, Yu Cai, Zhanli Yang, Ke Gao, Mingzhu Sun, and Xin Zhao. 2025. "Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation" Sensors 25, no. 17: 5479. https://doi.org/10.3390/s25175479
APA StyleDu, Y., Cai, Y., Yang, Z., Gao, K., Sun, M., & Zhao, X. (2025). Modeling and Validation of Oocyte Mechanical Behavior Using AFM Measurement and Multiphysics Simulation. Sensors, 25(17), 5479. https://doi.org/10.3390/s25175479