Joint State and Fault Estimation for Nonlinear Systems Subject to Measurement Censoring and Missing Measurements
Abstract
1. Introduction
2. System Modeling
2.1. System Description
2.2. Measurement Model
2.3. Augmented Matrix
2.4. Measurement Censoring Model
3. Main Result
Algorithm 1 The designed JSFE algorithm |
Input: initial conditions ; process and measurement noise ; total simulation times N. Output: state estimation values and fault estimate value . |
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wani, A.K.; Akhtar, N.; ul Gani Mir, T.; Chopra, C.; Singh, R.; Hong, J.C.; Kadam, U.S. CRISPR/Cas12a-based biosensors for environmental monitoring and diagnostics. Environ. Technol. Innov. 2024, 34, 103625. [Google Scholar] [CrossRef]
- Li, C.; Yan, W.; Wang, Z. Indoor environmental monitoring based on sensor data acquisition and thermal energy cycle: Design and application of artificial intelligence. Therm. Sci. Eng. Prog. 2025, 59, 103284. [Google Scholar] [CrossRef]
- You, X.; Xiao, K.; Wang, G. A static event-triggered background-impulse Kalman filter for wireless sensor networks with non-Gaussian measurement noise. Inf. Fusion 2025, 118, 102955. [Google Scholar] [CrossRef]
- Vázquez-Castillo, J.; Castillo-Atoche, A.; Estrada-López, J.J.; de-la Rosa, E.O.; Heredia-Lozano, J.; Quijano-Cetina, R. Energy-Saving Techniques for Urban Noise WSN With Kalman-Based State Estimation and Green Facade Energy Harvester. IEEE Trans. Instrum. Meas. 2022, 71, 9502110. [Google Scholar] [CrossRef]
- Otto, A.; Tilk, C. Intelligent design of sensor networks for data-driven sensor maintenance at railways. Omega 2024, 127, 103094. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Yu, C. Recent progress on mass-sensitive gas sensors for environmental and industrial applications. Measurement 2025, 249, 117039. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, X.; Wang, L.; Lu, G.; Jia, Y.; Qiu, Y.; Li, M. Edge-computing based soft sensors with local Finite Impulse Response models for vehicle wheel center loads estimation under multiple working conditions. Control Eng. Pract. 2023, 133, 105447. [Google Scholar] [CrossRef]
- Arevalo, P.; Ochoa-Correa, D. Toward Enhanced Efficiency: Soft Sensing and Intelligent Modeling in Industrial Electrical Systems. Processes 2024, 12, 1365. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y. Indoor Localization for Mobile Robots using Lampshade Corners as Landmarks: Visual System Calibration, Feature Extraction and Experiments. Int. J. Control Autom. Syst. 2014, 12, 1313–1322. [Google Scholar] [CrossRef]
- Li, P.; Tong, X.; Wang, Z.; Xu, M.; Zhu, J. Sensorless Model Predictive Control of Single-Phase Inverter for UPS Applications via Accurate Load Current Estimation. Sensors 2023, 23, 3742. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, J.; Zhang, J.; Cheng, S.; Wang, Y.; Zhang, W.; Yu, N. Security analysis and adaptive false data injection against multi-sensor fusion localization for autonomous driving. Inf. Fusion 2025, 117, 102822. [Google Scholar] [CrossRef]
- Du, H.; Ren, L.; Wang, Y.; Cao, X.; Sun, C. Advancements in perception system with multi-sensor fusion for embodied agents. Inf. Fusion 2025, 117, 102859. [Google Scholar] [CrossRef]
- Hamadi, A.; Latoui, A. An accurate smartphone-based indoor pedestrian localization system using ORB-SLAM camera and PDR inertial sensors fusion approach. Measurement 2025, 240, 115642. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, H.; Men, Y.; Ma, H.; Cao, Z.; Wang, W. Kalman Filter-Based EM-Optical Sensor Fusion for Bone Needle Position Tracking. IEEE Sens. J. 2024, 24, 11166–11173. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, L.; Zhao, Z.; Zhang, X.; Lu, Z. Cubature particle filtering fusion with descent gradient and maximum correntropy for non-Gaussian noise. Neurocomputing 2024, 592, 127634. [Google Scholar] [CrossRef]
- Yang, X.; Liu, W.; Xiao, W.; Ye, X.; Li, Z.; Wang, F. An Ephemeris for Cruisable UAV Pseudolite Navigation System Based on Deep Learning Networks. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2602–2613. [Google Scholar] [CrossRef]
- Chen, W.; Wang, T.; Yao, Z.; Lu, M.; Wang, Y.; Li, C. Analysis of the gain factors of 5G-assisted BDS RTK positioning in urban environments. Satell. Navig. 2024, 5, 28. [Google Scholar] [CrossRef]
- Tondas, D.; Ilieva, M.; van Leijen, F.; van der Marel, H.; Rohm, W. Kalman filter-based integration of GNSS and InSAR observations for local nonlinear strong deformations. J. Geod. 2023, 97, 109. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, S. Distributed filtering for multi-sensor networked systems with stochastic communication protocol and correlated noises. Inf. Fusion 2024, 104, 102121. [Google Scholar] [CrossRef]
- Li, G.; Gao, S.; Xia, J.; Yang, J.; Gao, Z. Distributed variational Bayesian adaptive filtering for randomly delayed measurements and unknown noise statistics in multi-sensor networked systems. Digit. Signal Process. 2023, 139, 104077. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, B. Distributed minimum error entropy with fiducial points Kalman filter for state tracking. ISA Trans. 2025, 156, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.K.; Rajpathak, B.; Mallareddy, M.; Bhuvanagiri, R. Dynamic state estimation of power system using hybrid whale-tunicate optimized unscented Kalman filter based on wide area measurement systems. Electr. Power Syst. Res. 2024, 230, 110242. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Wang, Y.; Li, Z.; Dinavahi, V.; Liang, J. Resilient Dynamic State Estimation for Power System Using Cauchy-Kernel-Based Maximum Correntropy Cubature Kalman Filter. IEEE Trans. Instrum. Meas. 2023, 72, 9002011. [Google Scholar] [CrossRef]
- Jones, C.N.S.; Utyuzhnikov, S.V. Application of noise-filtering techniques to data-driven analysis of electric power systems based on higher-order dynamic mode decomposition. Int. J. Electr. Power Energy Syst. 2024, 156, 109721. [Google Scholar] [CrossRef]
- Wang, T.; Xu, D.; Jiang, B.; Yan, X.G. Actuator Fault Detection and Estimation for Hydrofoil Attitude Control Systems: A Gaussian Mixture Model-Aided UKF Approach. IEEE Trans. Instrum. Meas. 2024, 73, 3530914. [Google Scholar] [CrossRef]
- Zhao, D.; Shi, Y.; Li, Y.; Liu, S. Fault Accommodation of Multiple Faults for a Class of Nonlinear Uncertain Systems: A Dynamic Fault Isolation Information Framework. IEEE Trans. Autom. Control 2024, 69, 7012–7019. [Google Scholar] [CrossRef]
- Song, X.; Rong, L.; Li, B.; Wang, Z.; Li, J. Joint state and fault estimation for nonlinear systems with missing measurements and random component faults under Round-Robin Protocol. Int. J. Electr. Power Energy Syst. 2023, 154, 109437. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zou, L.; Zhou, D.; Chen, W.H. Joint State and Fault Estimation of Complex Networks Under Measurement Saturations and Stochastic Nonlinearities. IEEE Trans. Signal Inf. Process. Over Netw. 2022, 8, 173–186. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, C.; Shi, Q.; Gao, R.F.; Ping, P. A Joint State and Fault Estimation Scheme for State-Saturated System with Energy Harvesting Sensors. Sensors 2024, 24, 1967. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Coskun, S.; Zhang, X.; Mei, P. State and fault estimation for nonlinear systems subject to censored measurements: A dynamic event-triggered case. Int. J. Robust Nonlinear Control 2022, 32, 4946–4965. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Dong, H. Minimum-Variance State and Fault Estimation for Multirate Systems With Dynamical Bias. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2361–2365. [Google Scholar] [CrossRef]
- Eddine, C.D.; Noura, M. H∞ Fault Estimation for Nonlinear Discrete Time-delay System with Actuator and Sensor Faults using Nonlinear T-S Fuzzy models. In Proceedings of the 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; p. 102. [Google Scholar]
- Stojanovic, V.; He, S.; Zhang, B. State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises. Int. J. Robust Nonlinear Control 2020, 30, 6683–6700. [Google Scholar] [CrossRef]
- Allik, B.; Miller, C.; Piovoso, M.J.; Zurakowski, R. The Tobit Kalman Filter: An Estimator for Censored Measurements. IEEE Trans. Control Syst. Technol. 2016, 24, 365–371. [Google Scholar] [CrossRef]
- Geng, H.; Wang, Z.; Mousavi, A.; Alsaadi, F.E.; Cheng, Y. Outlier-Resistant Filtering with Dead-Zone-Like Censoring Under Try-Once-Discard Protocol. IEEE Trans. Signal Process. 2022, 70, 714–728. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S. Distributed Adaptive Tobit Kalman Filter for Networked Systems Under Sensor Delays and Censored Measurements. IEEE Trans. Signal Inf. Process. Over Netw. 2022, 8, 445–458. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Wang, Y.; Park, J.; Ji, Z. A novel zonotopic Kalman filter-based actuator fault detection for time delay systems. ISA Trans. 2025, 159, 44–54. [Google Scholar] [CrossRef]
- Wan, X.; Wang, Z.; Han, Q.; Wu, M. A Recursive Approach to Quantized H∞ State Estimation for Genetic Regulatory Networks Under Stochastic Communication Protocols. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2840–2852. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Z.; Liu, Y.; Wang, R. Unscented-Kalman-Filter-Based Remote State Estimation for Complex Networks With Quantized Measurements and Amplify-and-Forward Relays. IEEE Trans. Cybern. 2024, 54, 6819–6831. [Google Scholar] [CrossRef]
- Tang, M.; Cai, S.; Lau, V.K.N. Radix-Partition-Based Over-the-Air Aggregation and Low-Complexity State Estimation for IoT Systems Over Wireless Fading Channels. IEEE Trans. Signal Process. 2022, 70, 1464–1477. [Google Scholar] [CrossRef]
- Tang, M.; Liu, M.; Zhang, S.; Zheng, R.; Dong, S. Distributed Target Tracking With Fading Channels Over Underwater Acoustic Sensor Networks. IEEE Internet Things J. 2024, 11, 13980–13994. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, W.; Li, Z.; Zhang, T.; Chen, J.; Liu, Y. Robust H∞ State Estimation for Distribution System Considering Randomly Missing Measurements. IEEE Trans. Instrum. Meas. 2023, 72, 9005416. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Dong, H.; Chen, Y.; Lu, G. Dynamic Event-Triggered Quadratic Nonfragile Filtering for Non-Gaussian Systems: Tackling Multiplicative Noises and Missing Measurements. IEEE/CAA J. Autom. Sin. 2024, 11, 1127–1138. [Google Scholar] [CrossRef]
- Kerr, T.H. Federated Square Root Filter for Decentralized Parallel Processes—Comment. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 946–949. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhou, D. Event-Triggered Fault Estimation for Nonlinear Systems with Missing Measurements. In Proceedings of the 33rd Chinese Control Conference (CCC), Nanjing, China, 28–30 July 2014; pp. 5533–5538. [Google Scholar]
- Huang, J.; He, X. Fault Detection of Nonlinear Systems with Missing Measurements and Censored Data. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Beijing, China, 29 October–1 November 2017; pp. 5797–5802. [Google Scholar]
- Li, J.; Hu, J.; Liu, H.; Yu, H.; Wu, Z. Nonlinear distributed filtering subject to censoring measurements under dynamic event-triggered communication mechanism: The state-saturated case. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106618. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhou, D. Resilient Actuator Fault Estimation for Discrete-Time Complex Networks: A Distributed Approach. IEEE Trans. Autom. Control 2021, 66, 4214–4221. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, X.; Chen, M.Z.Q. Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances. IEEE Trans. Ind. Electron. 2016, 63, 2537–2547. [Google Scholar] [CrossRef]
- Huang, L.; Chen, C.; Yun, J.; Sun, Y.; Tian, J.; Hao, Z.; Yu, H.; Ma, H. Multi-Scale Feature Fusion Convolutional Neural Network for Indoor Small Target Detection. Front. Neurorobot. 2022, 16, 881021. [Google Scholar] [CrossRef]
- Geng, H.; Wang, Z.; Alsaadi, F.E.; Alharbi, K.H.; Cheng, Y. Federated Tobit Kalman Filtering Fusion with Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol. IEEE Trans. Signal Inf. Process. Over Netw. 2021, 7, 1–16. [Google Scholar] [CrossRef]
Algorithm | RMSE of | RMSE of | RMSE of |
---|---|---|---|
The Proposed Method | 0.7223 | 0.4845 | 0.0859 |
UKF | 1.3463 | 1.1082 | 0.4041 |
EKF | 2.0065 | 2.1673 | 4.9826 |
Without federated fusion | 1.0503 | 0.9149 | 0.1431 |
Algorithm | RMSE of | RMSE of | RMSE of |
---|---|---|---|
The Proposed Method | 0.4662 | 0.5468 | 0.1481 |
UKF | 0.5560 | 4.3708 | 0.5132 |
EKF | 0.5269 | 3.4079 | 0.4032 |
Without federated fusion | 0.6239 | 3.8112 | 0.3961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, T.; He, X.; Rong, L.; Li, J. Joint State and Fault Estimation for Nonlinear Systems Subject to Measurement Censoring and Missing Measurements. Sensors 2025, 25, 5396. https://doi.org/10.3390/s25175396
Wang Y, Guo T, He X, Rong L, Li J. Joint State and Fault Estimation for Nonlinear Systems Subject to Measurement Censoring and Missing Measurements. Sensors. 2025; 25(17):5396. https://doi.org/10.3390/s25175396
Chicago/Turabian StyleWang, Yudong, Tingting Guo, Xiaodong He, Lihong Rong, and Juan Li. 2025. "Joint State and Fault Estimation for Nonlinear Systems Subject to Measurement Censoring and Missing Measurements" Sensors 25, no. 17: 5396. https://doi.org/10.3390/s25175396
APA StyleWang, Y., Guo, T., He, X., Rong, L., & Li, J. (2025). Joint State and Fault Estimation for Nonlinear Systems Subject to Measurement Censoring and Missing Measurements. Sensors, 25(17), 5396. https://doi.org/10.3390/s25175396