Preset-Time Convergence Fuzzy Zeroing Neural Network for Chaotic System Synchronization: FPGA Validation and Secure Communication Applications
Abstract
1. Introduction
- Proposing a PTCFZNN model based on T-S fuzzy control, which significantly improves convergence speed and anti-interference capabilities through the design of a fuzzy time-varying convergence factor and a novel activation function.
- Providing theoretical proof of the PTCFZNN’s global stability and deriving an explicit upper bound for convergence time.
- Validating the superior performance of the PTCFZNN model through simulation experiments and FPGA hardware implementation, both in noise-free and various noisy environments.
- Innovatively applying chaos-masking technology to secure communication experiments, demonstrating PTCFZNN’s practical potential in photoelectric signal encryption and transmission.
2. Problem Description and Preliminaries
2.1. Synchronization Problem of Chaotic Systems with Aperiodic Parameter Excitation
2.2. Mathematical Knowledge
3. Zeroing Neural Network Models
3.1. CZNN Model
3.2. SEZNN Model
3.3. DSZNN Model
3.4. The Proposed PTCFZNN Model
- Fuzzification: Fuzzification is the primary step in constructing an effective control system. The bell-shaped membership function (Gbellmf) is used to achieve the mapping from precise quantities to fuzzy sets. Its expression is
- Fuzzy Inference Engine: The rule base serves as a central component of the fuzzy logic system, and its design significantly influences the overall control performance. Differentiated linear output functions are adopted when the system error is in different intervals.
- Defuzzification: Defuzzification is a crucial step in converting the results of fuzzy inference into actual control parameters. Considering the sensitivity of the chaotic system to parameter changes, the weighted average method (wtaver) is used as the defuzzification operator, which can normalize the rule weights and suppress drastic changes. The calculation formula is as follows:
4. Theoretical Analysis of the PTCFZNN Model
4.1. Stability Analysis
4.2. Convergence Analysis
4.3. Robustness Analysis
5. Simulation Verification
5.1. The Chen Hyper-Chaotic System
5.2. Synchronization Simulations of Chen Hyper-Chaotic Systems in Noise-Free Environment
5.3. Synchronization Simulations of Chen Hyper-Chaotic Systems with Noise
6. FPGA Implementation
7. Secure Communication of the PTCFZNN-Based Chaotic System Synchronization
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20. [Google Scholar] [CrossRef]
- Iqbal, S.; Wang, J. A novel fractional-order 3-D chaotic system and its application to secure communication based on chaos synchronization. Phys. Scr. 2025, 100, 025243. [Google Scholar] [CrossRef]
- Yu, F.; Wu, C.; Xu, S.; Yao, W.; Xu, C.; Cai, S.; Wang, C. Color video encryption transmission in IoT based on memristive hopfield neural network. Signal, Image Video Process. 2025, 19, 77. [Google Scholar] [CrossRef]
- Yu, F.; Tan, B.; He, T.; He, S.; Huang, Y.; Cai, S.; Lin, H. A wide-range adjustable conservative memristive hyperchaotic system with transient quasi-periodic characteristics and encryption application. Mathematics 2025, 13, 726. [Google Scholar] [CrossRef]
- Tuna, M.; Fidan, C.B. Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik 2016, 127, 11786–11799. [Google Scholar] [CrossRef]
- Yu, F.; He, S.; Yao, W.; Cai, S.; Xu, Q. Bursting Firings in Memristive Hopfield Neural Network with Image Encryption and Hardware Implementation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2025. Early Access. [Google Scholar] [CrossRef]
- Yu, F.; Su, D.; He, S.; Wu, Y.; Zhang, S.; Yin, H. Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection. Chin. Phys. B 2025, 34, 050502. [Google Scholar] [CrossRef]
- Brindley, J.; Kapitaniak, T.; Kocarev, L. Controlling chaos by chaos in geophysical systems. Geophys. Res. Lett. 1995, 22, 1257–1260. [Google Scholar] [CrossRef]
- Babajans, R.; Cirjulina, D.; Capligins, F.; Kolosovs, D.; Litvinenko, A. Synchronization of Analog-Discrete Chaotic Systems for Wireless Sensor Network Design. Appl. Sci. 2024, 14, 915. [Google Scholar] [CrossRef]
- Shao, W.; Fu, Y.; Cheng, M.; Deng, L.; Liu, D. Chaos synchronization based on hybrid entropy sources and applications to secure communication. IEEE Photonics Technol. Lett. 2021, 33, 1038–1041. [Google Scholar] [CrossRef]
- Rahman, Z.A.S.; Jasim, B.H.; Al-Yasir, Y.I.; Hu, Y.F.; Abd-Alhameed, R.A.; Alhasnawi, B.N. A new fractional-order chaotic system with its analysis, synchronization, and circuit realization for secure communication applications. Mathematics 2021, 9, 2593. [Google Scholar] [CrossRef]
- Lin, D.; Wang, X.; Nian, F.; Zhang, Y. Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 2010, 73, 2873–2881. [Google Scholar] [CrossRef]
- Chen, D.; Li, S.; Wu, Q.; Luo, X. New disturbance rejection constraint for redundant robot manipulators: An optimization perspective. IEEE Trans. Ind. Inform. 2019, 16, 2221–2232. [Google Scholar] [CrossRef]
- Ahmad, I.; Saaban, A.B.; Ibrahim, A.B.; Shahzad, M.; Naveed, N. The synchronization of chaotic systems with different dimensions by a robust generalized active control. Optik 2016, 127, 4859–4871. [Google Scholar] [CrossRef]
- Zhang, M.; Zang, H.; Liu, Z. Fractional-order adaptive sliding mode control based on predefined-time stability for chaos synchronization. Chaos Solitons Fractals 2025, 191, 115921. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, D.; Wang, J. A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 2002, 13, 1053–1063. [Google Scholar] [CrossRef]
- Jin, J.; Zhu, J.; Zhao, L.; Chen, L.; Chen, L.; Gong, J. A robust predefined-time convergence zeroing neural network for dynamic matrix inversion. IEEE Trans. Cybern. 2022, 53, 3887–3900. [Google Scholar] [CrossRef]
- Jin, J.; Zhu, J.; Zhao, L.; Chen, L. A fixed-time convergent and noise-tolerant zeroing neural network for online solution of time-varying matrix inversion. Appl. Soft Comput. 2022, 130, 109691. [Google Scholar] [CrossRef]
- Zhu, J.; Jin, J.; Chen, C.; Wu, L.; Lu, M.; Ouyang, A. A New-Type Zeroing Neural Network Model and Its Application in Dynamic Cryptography. IEEE Trans. Emerg. Top. Comput. Intell. 2025, 9, 176–191. [Google Scholar] [CrossRef]
- Liao, B.; Han, L.; Cao, X.; Li, S.; Li, J. Double integral-enhanced Zeroing neural network with linear noise rejection for time-varying matrix inverse. CAAI Trans. Intell. Technol. 2024, 9, 197–210. [Google Scholar] [CrossRef]
- Jiang, C.; Xiao, X. Norm-based adaptive coefficient znn for solving the time-dependent algebraic riccati equation. IEEE/CAA J. Autom. Sin. 2023, 10, 298–300. [Google Scholar] [CrossRef]
- Xiao, L.; He, Y.; Liao, B.; Dai, J. An accelerated ZNN-based algorithm with piecewise time-varying parameters to solve time-variant linear equations. J. Comput. Appl. Math. 2021, 398, 113665. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, L.; Qiu, T.; Deng, F. Varying-parameter convergent-differential neural solution to time-varying overdetermined system of linear equations. IEEE Trans. Autom. Control 2019, 65, 874–881. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Jin, J. A noise-tolerant fuzzy-type zeroing neural network for robust synchronization of chaotic systems. Concurr. Comput. Pract. Exp. 2024, 36, e8218. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, L.; Weng, J.; Mao, Y.; Lu, W.; Xiao, L. A new varying-parameter recurrent neural-network for online solution of time-varying Sylvester equation. IEEE Trans. Cybern. 2018, 48, 3135–3148. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Z.; Zhang, Z.; Li, W.; Li, S. Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 2018, 105, 185–196. [Google Scholar] [CrossRef]
- Cao, S.; Jin, J.; Zhang, D.; Chen, C. A review of Zeroing neural network: Theory, algorithm and application. Neurocomputing 2025, 643, 130425. [Google Scholar] [CrossRef]
- Hu, Z.; Xiao, L.; Dai, J.; Xu, Y.; Zuo, Q.; Liu, C. A unified predefined-time convergent and robust ZNN model for constrained quadratic programming. IEEE Trans. Ind. Inform. 2020, 17, 1998–2010. [Google Scholar] [CrossRef]
- Xiao, L.; He, Y.; Wang, Y.; Dai, J.; Wang, R.; Tang, W. A segmented variable-parameter ZNN for dynamic quadratic minimization with improved convergence and robustness. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 2413–2424. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y. Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence. Nonlinear Dyn. 2014, 76, 1543–1559. [Google Scholar] [CrossRef]
- Jin, J.; Wu, M.; Ouyang, A.; Li, K.; Chen, C. A novel dynamic hill cipher and its applications on medical IoT. IEEE Internet Things J. 2025, 12, 14297–14308. [Google Scholar] [CrossRef]
- Ning, Y.; Jin, J.; Li, Z.; Chen, C.; Ouyang, A. A Time-varying Hill Cipher for Dynamic Image Cryptography. Tsinghua Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Jin, J. A novel adaptive parameter zeroing neural network for the synchronization of complex chaotic systems and its field programmable gate array implementation. Measurement 2025, 242, 115989. [Google Scholar] [CrossRef]
- Jin, J.; Fang, J.; Chen, C.; Li, Z.; Yu, F. A complex-valued time varying zeroing neural network model for synchronization of complex chaotic systems. Nonlinear Dyn. 2025, 113, 5471–5491. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Liu, W.; Tang, W.; Zhao, H.; Xu, S.; Park, J.H. Combined Disturbance Observer-based Fuzzy Finite-Time Preassigned Performance Control for State-Constrained Nonlinear Systems. Fuzzy Sets Syst. 2025, 508, 109321. [Google Scholar] [CrossRef]
- Suzuki, A.; Negishi, E. Fuzzy Logic Systems for Healthcare Applications. J. Biomed. Sustain. Healthc. Appl. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.Y.; Xie, X.P.; Wu, Z.G.; Yan, H.C. Adaptive reinforcement learning strategy-based sliding mode control of uncertain euler-lagrange systems with prescribed performance guarantees: Autonomous underwater vehicles-based verification. IEEE Trans. Fuzzy Syst. 2024, 32, 6160–6171. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge University Press: Cambridge, UK, 1920. [Google Scholar]
- Li, J.; Mao, M.; Zhang, Y. Simpler ZD-achieving controller for chaotic systems synchronization with parameter perturbation, model uncertainty and external disturbance as compared with other controllers. Optik 2017, 131, 364–373. [Google Scholar] [CrossRef]
- Chen, D.; Li, S.; Wu, Q. Rejecting chaotic disturbances using a super-exponential-zeroing neurodynamic approach for synchronization of chaotic sensor systems. Sensors 2018, 19, 74. [Google Scholar] [CrossRef]
- Chen, W.; Jin, J.; Chen, C.; Yu, F.; Wang, C. A disturbance suppression zeroing neural network for robust synchronization of chaotic systems and its FPGA implementation. Int. J. Bifurc. Chaos 2022, 32, 2250210. [Google Scholar] [CrossRef]
- Lee, T.H.; Harris, C.J. Adaptive Neural Network Control of Robotic Manipulators; World Scientific: Singapore, 1998; Volume 19. [Google Scholar]
- Jin, J.; Chen, W.; Ouyang, A.; Yu, F.; Liu, H. A time-varying fuzzy parameter zeroing neural network for the synchronization of chaotic systems. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 8, 364–376. [Google Scholar] [CrossRef]
Noise Type | Noise-Free | Linear Noise | Exponential Noise | Mixed Noise |
---|---|---|---|---|
DSZNN | 0.429565 s | 0.481293 s | 0.434673 s | 0.493382 s |
SEZNN | 0.74097 s | 1.63962 s | 1.40453 s | 1.68987 s |
CZNN | 1.6602 s | Fail | 1.9917s | Fail |
PTCFZNN (this work) | 0.0404471 s | 0.0413293 s | 0.0414542 s | 0.0432295 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Zhao, L.; Jin, J. Preset-Time Convergence Fuzzy Zeroing Neural Network for Chaotic System Synchronization: FPGA Validation and Secure Communication Applications. Sensors 2025, 25, 5394. https://doi.org/10.3390/s25175394
Xiao L, Zhao L, Jin J. Preset-Time Convergence Fuzzy Zeroing Neural Network for Chaotic System Synchronization: FPGA Validation and Secure Communication Applications. Sensors. 2025; 25(17):5394. https://doi.org/10.3390/s25175394
Chicago/Turabian StyleXiao, Liang, Lv Zhao, and Jie Jin. 2025. "Preset-Time Convergence Fuzzy Zeroing Neural Network for Chaotic System Synchronization: FPGA Validation and Secure Communication Applications" Sensors 25, no. 17: 5394. https://doi.org/10.3390/s25175394
APA StyleXiao, L., Zhao, L., & Jin, J. (2025). Preset-Time Convergence Fuzzy Zeroing Neural Network for Chaotic System Synchronization: FPGA Validation and Secure Communication Applications. Sensors, 25(17), 5394. https://doi.org/10.3390/s25175394