Impedance Analysis of a Two-Layer Air-Core Coil for AC Magnetometry Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Magnetic Field in Multilayer Coil
2.2. Model of Stray Capacitance in Multilayer Coil
2.3. Measurement of the Series Resistance of the Excitation Coil
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Specific Absorption Rate |
MPS | Magnetic Particle Spectroscopy |
MQS | Magneto-Quasistatic Approach |
FEM | Finite Element Method |
References
- Giustini, A.J.; Petryk, A.A.; Cassim, S.M.; Tate, J.A.; Baker, I.A.N.; Hoopes, P.J. Magnetic Nanoparticle Hyperthermia in Cancer Treatment. Nano Life 2010, 1, 17–32. [Google Scholar] [CrossRef]
- Stueber, D.D.; Villanova, J.; Aponte, I.; Xiao, Z.; Colvin, V.L. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021, 13, 943. [Google Scholar] [CrossRef]
- Montiel Schneider, M.G.; Martín, M.J.; Otarola, J.; Vakarelska, E.; Simeonov, V.; Lassalle, V.; Nedyalkova, M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022, 14, 204. [Google Scholar] [CrossRef]
- Egea-Benavente, D.; Ovejero, J.G.; Morales, M.d.P.; Barber, D.F. Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers 2021, 13, 4583. [Google Scholar] [CrossRef]
- Włodarczyk, A.; Gorgoń, S.; Radoń, A.; Bajdak-Rusinek, K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. Nanomaterials 2022, 12, 1807. [Google Scholar] [CrossRef]
- Stiufiuc, G.F.; Stiufiuc, R.I. Magnetic Nanoparticles: Synthesis, Characterization, and Their Use in Biomedical Field. Appl. Sci. 2024, 14, 1623. [Google Scholar] [CrossRef]
- Varalli, L.; Berlet, R.; Abenojar, E.; McDaid, J.; Gascoigne, D.A.; Bailes, J.; Aksenov, D.P. Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics 2015, 17, 499. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.M.M.; Courteau, A.; Bellaye, P.-S.; Kohli, E.; Oudot, A.; Doulain, P.-E.; Petitot, C.; Walker, P.-M.; Decréau, R.; Collin, B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022, 14, 2388. [Google Scholar] [CrossRef]
- Spirou, S.V.; Basini, M.; Lascialfari, A.; Sangregorio, C.; Innocenti, C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice. Nanomaterials 2018, 8, 401. [Google Scholar] [CrossRef] [PubMed]
- Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia. Nanomaterials 2015, 5, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials develop-ment for cancer therapy. J. Phys. Condens. Matter 2006, 18, S2919–S2934. [Google Scholar] [CrossRef]
- Maniotis, N.; Maragakis, M.; Vordos, N. A comprehensive analysis of nanomagnetism models for the evaluation of particle energy in magnetic hyperthermia. Nanoscale Adv. 2025, 7, 4252. [Google Scholar] [CrossRef]
- Yari, P.; Rezaei, B.; Dey, C.; Chugh, V.K.; Veerla, N.V.R.K.; Wang, J.-P.; Wu, K. Magnetic Particle Spectroscopy for Point-of-Care: A Review on Recent Advances. Sensors 2023, 23, 4411. [Google Scholar] [CrossRef] [PubMed]
- Löwa, N.; Gutkelch, D.; Welge, E.-A.; Welz, R.; Meier, F.; Baki, A.; Bleul, R.; Klein, T.; Wiekhorst, F. Novel Benchtop Magnetic Particle Spectrometer for Process Monitoring of Magnetic Nanoparticle Synthesis. Nanomaterials 2020, 10, 2277. [Google Scholar] [CrossRef]
- Du, Z.; Wang, D.; Sun, Y.; Noguchi, Y.; Bai, S.; Yoshida, T. Empirical Expression for AC Magnetization Harmonics of Magnetic Nanoparticles under High-Frequency Excitation Field for Thermometry. Nanomaterials 2020, 10, 2506. [Google Scholar] [CrossRef]
- Barmpatza, A.C.; Baklezos, A.T.; Vardiambasis, I.O.; Nikolopoulos, C.D. A Review of Characterization Techniques for Ferromagnetic Nanoparticles and the Magnetic Sensing Perspective. Appl. Sci. 2024, 14, 5134. [Google Scholar] [CrossRef]
- Kolahian, P.; Zarei Tazehkand, M.; Baghdadi, M. Design and Assessment of Track Structures in High-Frequency Planar Inductors. Energies 2024, 17, 923. [Google Scholar] [CrossRef]
- Tourkhani, F.; Viarouge, P. Accurate Analytical Model of Winding Losses in Round Litz Wire Windings. IEEE Trans. Magn. 2001, 37, 538–543. [Google Scholar] [CrossRef]
- Pawlak, M.; Pawlak, U. High-Frequency Model of the Toroidal Powder Core and Winding of a Litz Wire. Energies 2025, 18, 713. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Yang, B.; Li, S.; Song, H. Electromagnetic Fields Calculation and Optimization of Structural Parameters for Axial and Radial Helical Air-Core Inductors. Electronics 2024, 13, 3463. [Google Scholar] [CrossRef]
- Riba, J.-R.; Capelli, F. Analysis of Capacitance to Ground Formulas for Different High-Voltage Electrodes. Energies 2018, 11, 1090. [Google Scholar] [CrossRef]
- Suassuna de Andrade Ferreira, R.; Picher, P.; Meghnefi, F.; Fofana, I.; Ezzaidi, H.; Volat, C.; Behjat, V. Reproducing Transformers’ Frequency Response from Finite Element Method (FEM) Simulation and Parameters Optimization. Energies 2023, 16, 4364. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Mao, M.; Ma, X. Analysis and Optimization of the Stray Capacitance of Rogowski Coils. Appl. Sci. 2024, 14, 7748. [Google Scholar] [CrossRef]
- Gorbatyy, I.N.; Zhura, I.P. Eddy currents in multilayer coils. Am. J. Phys. 2021, 89, 284–290. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Liu, X.; He, C. An Analytical Model for Predicting the Self-Capacitance of Multi-Layer Circular-Section Induction Coils. IEEE Trans. Magn. 2018, 54, 6201007. [Google Scholar] [CrossRef]
- Midura, M.; Wróblewski, P.; Wanta, D.; Kryszyn, J.; Smolik, W.T.; Domański, G.; Wieteska, M.; Obrębski, W.; Piątkowska-Janko, E.; Bogorodzki, P. The Hybrid System for the Magnetic Characterization of Superparamagnetic Nanoparticles. Sensors 2022, 22, 8879. [Google Scholar] [CrossRef] [PubMed]
Symbol | Definition | Unit |
---|---|---|
a | parameter in the integral | dimensionless |
Br | radial component of magnetic induction | T |
Bz | axial component of magnetic induction | T |
Bϕ | angular component of magnetic induction | T |
Ci | coefficient in magnetic field equation | T |
Cll | layer-to-layer capacitance | F |
C | total capacitance of coil | F |
Ctt | turn-to-turn capacitance | F |
d | inner diameter of coil | m |
D | outer diameter of coil | m |
Di | coefficient in magnetic field equation | T |
d0 | wire outer diameter | m |
d0c | wire core diameter | m |
ds | strand diameter | m |
Eϕ | angular component of electric field | V/m |
fres | resonance frequency | Hz |
i | index of the layer | dimensionless |
ic | current | A |
I | current amplitude | A |
J0 | Bessel function of the first kind, order zero | dimensionless |
J1 | Bessel function of the first kind, order one | dimensionless |
Jϕ | angular component of current density | A/m2 |
KD | ratio of AC resistance to DC one | dimensionless |
L | inductance of the coil | H |
lt | turn length | m |
ki | wavenumber in i-th layer | 1/m |
N | total number of turns | dimensionless |
Nl | number of turns in each layer | dimensionless |
Nm | number of layers | dimensionless |
N0 | number of strands in Litz wire | dimensionless |
Pi | power loss in i-th layer | W |
pr | pitch in radial direction | m |
pz | pitch in axial direction | m |
r | radial coordinate | m |
R | total resistance of the coil | Ω |
RAC | AC resistance | Ω |
RDC | DC resistance | Ω |
t | time | s |
w | length of the magnetic coil | m |
Y0 | Bessel function of the second kind, order zero | dimensionless |
Y1 | Bessel function of the second kind, order one | dimensionless |
z | axial coordinate | m |
Z | coil impedance | Ω |
β | packing factor | dimensionless |
ε0 | electric permittivity of vacuum | F/m |
εr | relative electric permittivity | dimensionless |
θ | planar angle | rad |
μi | magnetic permeability of i-th layer | H/m |
μ0 | magnetic permeability of vacuum | H/m |
σi | conductivity of i-th layer | S/m |
ϕ | azimuthal angle | rad |
ω | angular frequency | rad/s |
Parameter | Single Layer Coil | Two Layer Coil Without Gap | Two Layer Coil with Gap |
---|---|---|---|
L measured | 56 ± 1 μH | 180 ± 1 μH | 173 ± 1 μH |
L calculated | 47 μH | 213 μH | 229 μH |
fres | 6.10 ± 0.10 MHz | 0.35 ± 0.01 MHz | 1.74 ± 0.02 MHz |
C | 12.2 ± 0.5 pF | 1149 ± 66 pF | 48.3 ± 1.1 pF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midura, M.; Domański, G.; Wanta, D.; Wróblewski, P.; Smolik, W.T.; Lipiński, K.; Wieteska, M.; Bogorodzki, P. Impedance Analysis of a Two-Layer Air-Core Coil for AC Magnetometry Applications. Sensors 2025, 25, 5339. https://doi.org/10.3390/s25175339
Midura M, Domański G, Wanta D, Wróblewski P, Smolik WT, Lipiński K, Wieteska M, Bogorodzki P. Impedance Analysis of a Two-Layer Air-Core Coil for AC Magnetometry Applications. Sensors. 2025; 25(17):5339. https://doi.org/10.3390/s25175339
Chicago/Turabian StyleMidura, Mateusz, Grzegorz Domański, Damian Wanta, Przemysław Wróblewski, Waldemar T. Smolik, Kamil Lipiński, Michał Wieteska, and Piotr Bogorodzki. 2025. "Impedance Analysis of a Two-Layer Air-Core Coil for AC Magnetometry Applications" Sensors 25, no. 17: 5339. https://doi.org/10.3390/s25175339
APA StyleMidura, M., Domański, G., Wanta, D., Wróblewski, P., Smolik, W. T., Lipiński, K., Wieteska, M., & Bogorodzki, P. (2025). Impedance Analysis of a Two-Layer Air-Core Coil for AC Magnetometry Applications. Sensors, 25(17), 5339. https://doi.org/10.3390/s25175339