In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Equipment and Outcome Measures
2.2.1. Clinical Assessment
2.2.2. Kinetics (Force)
2.2.3. Push-Up Tasks
- Static push-up test: Maintain the push-up position with the hands shoulder-width apart, elbows completely extended, feet touching the floor with the knees extended, and the hip in neutral position for thirty seconds.
- Countermovement push-up test: Perform the maximum possible number of push-ups in thirty seconds.
- Jumping push-up test: Carry out three repetitions of the jumping push-up.
- -
- Maintain a straight body posture, forming a line across the head, shoulders, hips, knees, and feet.
- -
- Put your hands shoulder-width apart, with the fingers facing forward.
- -
- Place the feet hip-width apart, with the toes touching the floor, forming a right angle at the ankles.
- -
- Perform the push-ups, flexing the elbow until 90º degrees, and return to the starting position.
- -
- Avoid movement of the back, pelvis, and knees during the tasks.
- -
- Remove both hands from the force plates at the same time during the jumping push-ups.
2.2.4. Kinematics
- Spine/thorax: The 7th cervical vertebrae, 10th thoracic vertebrae, jugular space, xiphoid process, and one cluster on the interscapular region.
- Upper limb: The 2nd knuckle, 3rd knuckle, 5th knuckle, radial styloid, ulnar styloid, ½ surface of the forearm, lateral epicondyle, medial epicondyle, ½ surface of the upper arm, and one cluster on the acromioclavicular joint.
- Pelvis: The ½ iliac crest, posterosuperior iliac spine, and greater trochanter.
- Lower limb: The 5th metatarsophalangeal joint, posterior surface of the calcaneus, tibial malleolus, peroneal malleolus, ½ surface of the shank, lateral side of the tibial plateau, medial side of the tibial plateau, and ½ surface of the thigh.
- The marker positions used in this study were selected following the standards of the International Society of Biomechanics [27], in conjunction with the protocols provided by the manufacturer of the three-dimensional motion capture system. Therefore, the markers are not placed directly on muscles but on bony landmarks to minimize soft tissue motion artifacts that could lead to errors in the joint kinematics analysis. Moreover, these points should be anatomically relevant to define shoulder or thorax segments, and should not be occluded during the selected task to avoid the risk of tracking errors.
2.3. Data Analysis
2.4. Sample Size
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakhsh, W.; Nicandri, G. Anatomy and Physical Examination of the Shoulder. Sports Med. Arthrosc. Rev. 2018, 26, e10–e22. [Google Scholar] [CrossRef] [PubMed]
- Ladd, L.M.; Crews, M.; Maertz, N.A. Glenohumeral Joint Instability: A Review of Anatomy, Clinical Presentation, and Imaging. Clin. Sports Med. 2021, 40, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Kavaja, L.; Lähdeoja, T.; Malmivaara, A.; Paavola, M. Treatment after traumatic shoulder dislocation: A systematic review with a network meta-analysis. Br. J. Sports Med. 2018, 52, 1498–1506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavallo, R.J.; Speer, K.P. Shoulder instability and impingement in throwing athletes. Med. Sci. Sports Exerc. 1998, 30 (Suppl. S4), S18–S25. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Okoroha, K.R.; Patel, B.H.; Nwachukwu, B.U.; Baker, J.D.; Idarraga, A.J.; Forsythe, B. Return to play and performance after shoulder instability in National Basketball Association athletes. J. Shoulder Elb. Surg. 2020, 29, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Arciero, R.A.; Parrino, A.; Bernhardson, A.S.; Diaz-Doran, V.; Obopilwe, E.; Cote, M.P.; Golijanin, P.; Mazzocca, A.D.; Provencher, M.T. The effect of a combined glenoid and Hill-Sachs defect on glenohumeral stability: A biomechanical cadaveric study using 3-dimensional modeling of 142 patients. Am. J. Sports Med. 2015, 43, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, A.; Noorani, A.; Malone, A.; Cowan, J.; Lambert, S.; Bayley, I. Muscle activation patterns in patients with recurrent shoulder instability. Int. J. Shoulder Surg. 2012, 6, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Morán-Navarro, R.; Martínez-Cava, A.; Sánchez-Medina, L.; Mora-Rodríguez, R.; González-Badillo, J.J.; Pallarés, J.G. Movement Velocity as a Measure of Level of Effort During Resistance Exercise. J. Strength Cond. Res. 2019, 33, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Laurent, A.; Plamondon, R.; Begon, M. Central, and Peripheral Shoulder Fatigue Pre-screening Using the Sigma-Lognormal Model: A Proof of Concept. Front. Hum. Neurosci. 2020, 14, 171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, B.L.; Smith, P.A. Shoulder instability in young athletes. Am. Fam. Physician 1999, 59, 2773–2782, 2787. [Google Scholar] [PubMed]
- Moroder, P.; Danzinger, V.; Maziak, N.; Plachel, F.; Pauly, S.; Scheibel, M.; Minkus, M. Characteristics of functional shoulder instability. J. Shoulder Elb. Surg. 2020, 29, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM&R 2011, 3, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Gombera, M.M.; Sekiya, J.K. Rotator cuff tear and glenohumeral instability: A systematic review. Clin. Orthop. Relat. Res. 2014, 472, 2448–2456. [Google Scholar] [CrossRef] [PubMed]
- Topley, M.; Richards, J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef] [PubMed]
- Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-Retest Reliability of a Commercial Linear Position Transducer (GymAware PowerTool) to Measure Velocity and Power in the Back Squat and Bench Press. J. Strength Cond. Res. 2020, 34, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Spanhove, V.; Van Daele, M.; Van den Abeele, A.; Rombaut, L.; Castelein, B.; Calders, P.; Malfait, F.; Cools, A.; De Wandele, I. Muscle activity and scapular kinematics in individuals with multidirectional shoulder instability: A systematic review. Ann. Phys. Rehabil. Med. 2021, 64, 101457. [Google Scholar] [CrossRef] [PubMed]
- Kallenberg, L.A.; Hermens, H.J. Behavior of a surface EMG-based measure for motor control: Motor unit action potential rate in relation to force and muscle fatigue. J. Electromyogr. Kinesiol. 2008, 18, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Urbanczyk, C.A.; Prinold, J.A.I.; Reilly, P.; Bull, A.M.J. Avoiding high-risk rotator cuff loading: Muscle force during three pull-up techniques. Scand. J. Med. Sci. Sports 2020, 30, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Edouard, P.; Gasq, D.; Calmels, P.; Degache, F. Sensorimotor control deficiency in recurrent anterior shoulder instability assessed with a stabilometric force platform. J. Shoulder Elb. Surg. 2014, 23, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Fanning, E.; Daniels, K.; Cools, A.; Mullett, H.; Delaney, R.; McFadden, C.; Falvey, E. Upper Limb Strength and Performance Deficits after Glenohumeral-Joint-Stabilisation Surgery in Contact and Collision Athletes. Med. Sci. Sports Exerc. 2023, 56, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Dai, B. The validity of using one force platform to quantify whole-body forces, velocities, and power during a plyometric push-up. BMC Sports Sci. Med. Rehabil. 2021, 13, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DIN EN ISO 9000:2015-11; Quality Management Systems—Fundamentals and Vocabulary. Deutsches Institut für Normung (DIN): Berlin, Germany, 2015.
- Croci, E.; Born, P.; Eckers, F.; Nüesch, C.; Baumgartner, D.; Müller, A.M.; Mündermann, A. Test-retest reliability of isometric shoulder muscle strength during abduction and rotation tasks measured using the Biodex dynamometer. J. Shoulder Elb. Surg. 2023, 32, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Parry, G.N.; Herrington, L.C.; Horsley, I.G. The Test-Retest Reliability of Force Plate-Derived Parameters of the Countermovement Push-Up as a Power Assessment Tool. J. Sport Rehabil. 2020, 29, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Oyama, S.; Sosa, A.; Campbell, R.; Correa, A. Reliability and Validity of Quantitative Video Analysis of Baseball Pitching Motion. J. Appl. Biomech. 2017, 33, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist, and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Polovinets, O.; Wolf, A.; Wollstein, R. Force transmission through the wrist during performance of push-ups on a hyperextended and a neutral wrist. J. Hand Ther. 2018, 31, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Matsuo, A.; Maeda, A.; Nakamoto, H.; Mizutani, M.; Kanehisa, H.; Fukunaga, T. Reliability and Validity of Kinetic and Kinematic Parameters Determined with Force Plates Embedded Under a Soil-Filled Baseball Mound. J. Appl. Biomech. 2017, 33, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Akeda, M.; Mihata, T.; Jeong, W.K.; McGarry, M.H.; Yamazaki, T.; Lee, T.Q. Lower shoulder abduction during throwing motion may cause forceful internal impingement and decreased anterior stability. J. Shoulder Elb. Surg. 2018, 27, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, P.K.; Lubiatowski, P.; Cisowski, P.; Grygorowicz, M.; Łepski, M.; Długosz, J.; Ogrodowicz, P.; Dudziński, W.; Nowak, M.; Romanowski, L. Shoulder problems in overhead sports. Part I–biomechanics of throwing. Pol. Orthop. Traumatol. 2014, 79, 50–58. [Google Scholar] [PubMed]
- Teigen, L.E.; Sundberg, C.W.; Kelly, L.J.; Hunter, S.K.; Fitts, R.H. Ca2+ dependency of limb muscle fiber contractile mechanics in young and older adults. Am. J. Physiol. Cell Physiol. 2020, 318, C1238–C1251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Rozenek, R.; Byrne, J.J.; Crussemeyer, J.; Garhammer, J. Male-Female Differences in Push-up Test Performance at Various Cadences. J. Strength Cond. Res. 2022, 36, 3324–3329. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Rayner, M.; Mahmoud, M.M.I.; Behm, D.G. Push-Ups vs. Bench Press Differences in Repetitions and Muscle Activation between Sexes. J. Sports Sci. Med. 2020, 19, 289–297. [Google Scholar] [PubMed] [PubMed Central]
- Salles, J.I.; Velasques, B.; Cossich, V.; Nicoliche, E.; Ribeiro, P.; Amaral, M.V.; Motta, G. Strength training and shoulder proprioception. J. Athl. Train. 2015, 50, 277–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Myers, J.B.; Guskiewicz, K.M.; Schneider, R.A.; Prentice, W.E. Proprioception and neuromuscular control of the shoulder after muscle fatigue. J. Athl. Train. 1999, 34, 362–367. [Google Scholar] [PubMed] [PubMed Central]
- Wang, R.; Hoffman, J.R.; Sadres, E.; Bartolomei, S.; Muddle, T.W.D.; Fukuda, D.H.; Stout, J.R. Evaluating Upper-Body Strength and Power from a Single Test: The Ballistic Push-up. J. Strength Cond. Res. 2017, 31, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Cunningham, D.J.; Crewther, B.T.; Cook, C.J.; Kilduff, L.P. Influence of ballistic bench press on upper body power output in professional rugby players. J. Strength Cond. Res. 2013, 27, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- San Juan, J.G.; Suprak, D.N.; Roach, S.M.; Lyda, M. The effects of exercise type and elbow angle on vertical ground reaction force and muscle activity during a push-up plus exercise. BMC Musculoskelet. Disord. 2015, 16, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez-Fernandez, J.; Nakamura, F.Y.; Moreno-Perez, V.; Lopez-Valenciano, A.; Del Coso, J.; Gallo-Salazar, C.; Barbado, D.; Ruiz-Perez, I.; Sanz-Rivas, D. Age and sex-related upper body performance differences in competitive young tennis players. PLoS ONE 2019, 14, e0221761. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Renda, E.; Lamanuzzi, S.; Dal Maso, F.; Côté, J.N. The effects of hand dominance, fatigue, and sex on muscle activation during a repetitive overhead fatiguing task. Hum. Mov. Sci. 2023, 92, 103149. [Google Scholar] [CrossRef] [PubMed]
- Olds, M.; McLaine, S.; Magni, N. Validity and Reliability of the Kinvent Handheld Dynamometer in the Athletic Shoulder Test. J. Sport Rehabil. 2023, 32, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Kotarsky, C.J.; Christensen, B.K.; Miller, J.S.; Hackney, K.J. Effect of Progressive Calisthenic Push-up Training on Muscle Strength and Thickness. J. Strength Cond. Res. 2018, 32, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, J.S.; Hwang, H.J.; Jeong, W.K. Time to peak torque and acceleration time are altered in male patients following traumatic shoulder instability. J. Shoulder Elb. Surg. 2018, 27, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Duc, C.; Pichonnaz, C.; Bassin, J.P.; Farron, A.; Jolles, B.M.; Aminian, K. Evaluation of muscular activity duration in shoulders with rotator cuff tears using inertial sensors and electromyography. Physiol. Meas. 2014, 35, 2389–2400. [Google Scholar] [CrossRef]
- Lee, H.M.; Oh, S.; Kwon, J.W. Effect of Plyometric versus Ankle Stability Exercises on Lower Limb Biomechanics in Taekwondo Demonstration Athletes with Functional Ankle Instability. Int. J. Environ. Res. Public Health 2020, 17, 3665. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karimi, M.T.; Sharifmoradi, K. Static and local dynamic stability of subjects with knee joint osteoarthritis. Proc. Inst. Mech. Eng. H 2022, 236, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
Side | Force Peak | Confidence Interval (95%) | Mean Differences | Test Statistic | Effect Size (Cohen’s d) | Time to Peak | Confidence Interval (95%) | Mean Differences | Test Statistic | Effect Size (Cohen’s d) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | M | F | M | F | M | F | |||||||
LEFT | 63.2 (9.42) | 36.8 (9.67) | 57.7–68.6 | 26.7–47.0 | 26.3 (4.63) | F = 31.6; p < 0.001 | 2.77 | 2.07 (1.05) | 1.70 (0.79) | 1.47–2.68 | 0.87–2.52 | 0.38 (0.48) | F = 0.79; p = 0.391 | 0.39 |
RIGHT | 64.2 (10.75) | 38.9 (9.75) | 58.0–70.4 | 28.7–49.2 | 25.3 (5.11) | F = 26.6; p < 0.001 | 2.47 | 2.35 (1.07) | 2.34 (1.24) | 1.74–2.97 | 1.04–3.64 | 0.01 (0.55) | F = 0.0004; p = 0.984 | 0.01 |
Task | Variable | Side | Outcomes | Confidence Interval (95%) | Test Statistic | Effect Size (Cohen’s d) | ||
---|---|---|---|---|---|---|---|---|
M | F | M | F | |||||
STATIC PUSH-UP | Ground Reaction Force | Left | 272.53 (30.11) | 205.65 (26.88) | 255–290 | 177–234 | F = 24.15; p < 0.001 | 2.34 |
Right | 288.03 (33.08) | 217.02 (22.96) | 269–307 | 193–241 | F = 30.38; p < 0.001 | 2.49 | ||
COP_X Displacement | Left | 5.17 (0.83) | 8.03 (2.78) | 4.69–5.65 | 5.12–10.9 | F = 6.11; p = 0.053 | 1.39 | |
Right | 3.66 (0.77) | 5.41 (0.31) | 4.47–5.67 | 1.25–18.0 | F = 52.26; p < 0.001 | 2.98 | ||
COP_Y Displacement | Left | 5.07 (1.04) | 9.65 (8.00) | 3.22–4.11 | 5.08–5.74 | F = 1.95; p = 0.220 | 0.80 | |
Right | 3.87 (0.46) | 5.77 (1.93) | 3.60–4.13 | 3.75–7.80 | F = 5.74; p = 0.060 | 1.35 | ||
COUNTER-MOVEMENT PUSH-UP | Number of push-ups | Both | 25.1 (6.88) | 12.7 (3.72) | 21.2–29.1 | 8.76–16.6 | F = 27.34; p < 0.001 | 2.24 |
Ground Reaction Force | Left | 443.2 (70.19) | 258.8 (40.86) | 403–484 | 216–302 | F = 54.02; p < 0.001 | 3.21 | |
Right | 453.1 (70.04) | 275.2 (50.80) | 413–494 | 222–329 | F = 40.56; p < 0.001 | 2.91 | ||
COP_X Displacement | Left | 21.0 (18.38) | 17.8 (13.09) | 10.4–31.6 | 4.08–31.6 | F = 0.19; p = 0.668 | 0.20 | |
Right | 12.6 (7.40) | 11.9 (7.18) | 11.7–29.7 | 4.85–36.3 | F = 0.03; p = 0.859 | 0.10 | ||
COP_Y Displacement | Left | 20.7 (15.59) | 20.6 (14.98) | 8.28–16.8 | 4.38–19.4 | F = 0.0003; p = 0.986 | 0.01 | |
Right | 13.3 (8.12) | 13.0 (8.00) | 8.58–18.0 | 4.65–21.4 | F = 0.003; p = 0.954 | 0.03 | ||
JUMPING PUSH-UP | Ground Reaction Force | Left | 884.6 (323.83) | 468.2 (151.59) | 698–1072 | 309–627 | F = 15.32; p = 0.001 | 1.63 |
Right | 768.0 (266.51) | 479.9 (136.19) | 614–922 | 337–623 | F = 10.17; p = 0.005 | 1.36 | ||
COP_X Displacement | Left | 35.0 (11.23) | 30.1 (8.86) | 28.5–41.5 | 20.8–39.4 | F = 1.09; p = 0.316 | 0.48 | |
Right | 30.0 (7.18) | 25.0 (7.27) | 43.1–75.3 | 19.5–62.4 | F = 2.02; p = 0.187 | 0.69 | ||
COP_Y Displacement | Left | 59.2 (27.84) | 40.9 (20.44) | 25.9–34.1 | 17.3–32.6 | F = 2.67; p = 0.126 | 0.75 | |
Right | 33.3 (15.25) | 25.6 (5.31) | 24.5–42.1 | 20.0–31.1 | F = 2.80; p = 0.112 | 0.67 |
Task | Variable | Side | Outcomes | Confidence Interval (95%) | Test Statistic | Effect Size (Cohen’s d) | ||
---|---|---|---|---|---|---|---|---|
M | F | M | F | |||||
COUNTER-MOVEMENT PUSH-UP | Shoulder Elevation ROM | Left | 43.32 (11.2) | 46.04 (13.03) | 36.9–49.8 | 32.4–59.7 | F = 0.197; p = 0.668 | 0.22 |
Right | 45.33 (11.16) | 47.33 (13.54) | 38.9–51.8 | 33.1–61.5 | F = 0.102; p = 0.758 | 0.16 | ||
Elbow Flexo-Extension ROM | Left | 122.34 (41.58) | 104.77 (54.86) | 98.3–146 | 47.2–162 | F = 0.494; p = 0.503 | 0.36 | |
Right | 126.14 (45.01) | 108.30 (49.04) | 100–152 | 56.8–160 | F = 0.583; p = 0.465 | 0.38 | ||
Humerus Max. Acc. | Left | 2.22 (0.94) | 1.22 (0.70) | 1.68–2.77 | 0.49–1.96 | F = 6.932; p = 0.021 | 1.20 | |
Right | 2.21 (1.00) | 1.20 (0.81) | 1.63–2.79 | 0.36–2.05 | F = 5.603; p = 0.036 | 1.10 | ||
Humerus Acc. Decrement (%) | Left | 46.63 (16.47) | 43.26 (20.26) | 37.1–56.1 | 22.0–64.5 | F = 0.130; p = 0.728 | 0.18 | |
Right | 44.90 (16.36) | 44.45 (15.73) | 35.4–54.3 | 27.9–61.0 | F = 0.003; p = 0.955 | 0.03 | ||
Forearm Max. Acc. | Left | 0.67 (0.24) | 0.49 (0.33) | 0.53–0.81 | 0.15–0.83 | F = 1.456; p = 0.264 | 0.62 | |
Right | 0.62 (0.19) | 0.89 (1.06) | 0.51–0.72 | −0.21–2.00 | F = 0.409; p = 0.550 | 0.35 | ||
Forearm Acc. Decrement (%) | Left | 59.64 (16.69) | 64.10 (13.13) | 50.0–69.3 | 50.3–77.9 | F = 0.409; p = 0.534 | 0.29 | |
Right | 58.53 (17.13) | 71.00 (13.52) | 48.6–68.4 | 56.8–85.2 | F = 3.027; p = 0.107 | 0.81 | ||
JUMPING PUSH-UP | Shoulder Elevation ROM | Left | 57.00 (17.02) | 53.54 (27.01) | 47.2–66.8 | 25.2–81.9 | F = 0.084; p = 0.780 | 0.15 |
Right | 53.54 (16.80) | 50.65 (20.27) | 43.6–63.0 | 29.3–72.0 | F = 0.077; p = 0.788 | 0.16 | ||
Elbow Flexo-Extension ROM | Left | 132.33 (31.78) | 99.35 (51.23) | 114–151 | 45.6–153 | F = 2.135; p = 0.189 | 0.77 | |
Right | 125.72 (40.69) | 103.23 (50.16) | 102–149 | 50.6–156 | F = 0.942; p = 0.360 | 0.49 | ||
Humerus Max. Acc. | Left | 1.90 (0.64) | 0.90 (0.35) | 1.53–2.27 | 0.53–1.26 | F = 20.488; p < 0.001 | 1.93 | |
Right | 1.91 (0.62) | 1.04 (0.48) | 1.56–2.27 | 0.54–1.54 | F = 11.900; p = 0.005 | 1.57 | ||
Humerus Max. Dec. | Left | 0.16 (0.51) | −0.16 (0.38) | −0.13–0.46 | −0.56–0.23 | F = 2.509; p = 0.138 | 0.71 | |
Right | 0.28 (0.53) | −0.07 (0.39) | −0.02–0.59 | −0.48–0.34 | F = 2.690; p = 0.125 | 0.75 | ||
Forearm Max. Acc. | Left | 2.85 (0.91) | 1.06 (0.40) | 2.33–3.38 | 0.64–1.48 | F = 37.160; p < 0.001 | 2.55 | |
Right | 2.70 (0.75) | 1.22 (0.63) | 2.26–3.13 | 0.56–1.89 | F = 20.342; p < 0.001 | 2.14 | ||
Forearm Max. Dec. | Left | −0.14 (0.17) | −0.04 (0.08) | −0.24–−0.04 | −0.12–0.04 | F = 3.028; p = 0.099 | 0.75 | |
Right | −0.13 (0.10) | −0.07 (0.11) | −0.19–−0.07 | −0.18–0.05 | F = 1.501; p = 0.252 | 0.57 |
Task | Variable | Side | Force Peak (Left) | Force Peak (Right) | Time to Peak (Left) | Time to Peak (Right) | GRF (Left) | GRF (Right) |
---|---|---|---|---|---|---|---|---|
STATIC PUSH-UP | Ground Reaction Force | Left | 0.667 ** | 0.731 *** | −0.164 | −0.273 | - | 0.799 *** |
Right | 0.726 *** | 0.750 *** | 0.006 | −0.216 | 0.799 *** | - | ||
COP_X Displacement | Left | −0.512 * | −0.551 * | 0.223 | 0.226 | −0.804 *** | −0.442 | |
Right | −0.827 *** | −0.841 *** | 0.009 | 0.167 | −0.839 *** | −0.878 *** | ||
COP_Y Displacement | Left | −0.270 | −0.326 | 0.220 | 0.115 | −0.614 ** | −0.194 | |
Right | −0.443 | −0.472 * | 0.083 | 0.110 | −0.725 *** | −0.396 | ||
COUNTER-MOVEMENT PUSH-UP | Number of push-ups | Both | 0.598 ** | 0.553 * | 0.379 | 0.276 | 0.730 *** | 0.713 *** |
Ground Reaction Force | Left | 0.759 *** | 0.747 *** | 0.086 | 0.173 | - | 0.993 *** | |
Right | 0.749 *** | 0.761 *** | 0.065 | 0.140 | 0.993 *** | - | ||
COP_X Displacement | Left | 0.020 | 0.003 | −0.121 | 0.222 | 0.353 | 0.355 | |
Right | −0.010 | −0.006 | −0.064 | 0.251 | 0.430 | 0.444 | ||
COP_Y Displacement | Left | −0.079 | −0.089 | −0.207 | 0.191 | 0.366 | 0.382 | |
Right | −0.015 | −0.043 | −0.124 | 0.208 | 0.406 | 0.414 | ||
JUMPING PUSH-UP | Ground Reaction Force | Left | 0.714 *** | 0.641 ** | −0.034 | −0.119 | - | 0.832 *** |
Right | 0.615 ** | 0.519 * | −0.033 | −0.116 | 0.832 *** | - | ||
COP_X Displacement | Left | 0.265 | 0.159 | 0.216 | 0.196 | −0.090 | −0.074 | |
Right | 0.439 | 0.358 | 0.128 | 0.070 | 0.458 * | 0.394 | ||
COP_Y Displacement | Left | 0.538 * | 0.467 * | 0.167 | 0.200 | 0.167 | 0.120 | |
Right | 0.172 | 0.316 | −0.185 | −0.229 | 0.164 | 0.208 |
Task | Variable | Side | GRF (Left) | GRF (Right) | COP_X (Left) | COP_X (Right) | COP_Y (Left) | COP_Y (Right) |
---|---|---|---|---|---|---|---|---|
COUNTER-MOVEMENT PUSH-UP | Shoulder Elevation ROM | Left | −0.170 | −0.194 | 0.203 | 0.172 | 0.318 | 0.260 |
Right | −0.153 | −0.187 | −0.386 | −0.337 | −0.249 | −0.241 | ||
Elbow Flexo-Extension ROM | Left | 0.302 | 0.344 | 0.021 | 0.149 | 0.087 | 0.053 | |
Right | 0.285 | 0.312 | −0.010 | 0.129 | 0.053 | 0.023 | ||
Humerus Max. Acc. | Left | 0.679 ** | 0.677 ** | 0.781 *** | 0.739 *** | 0.678 ** | 0.684 *** | |
Right | −0.084 | −0.109 | −0.225 | −0.138 | −0.017 | −0.089 | ||
Humerus Acc. Decrement (%) | Left | 0.721 *** | 0.726 *** | 0.761 *** | 0.801 *** | 0.729 *** | 0.743 *** | |
Right | −0.115 | −0.155 | −0.255 | −0.169 | −0.149 | −0.095 | ||
Forearm Max. Acc. | Left | 0.477 * | 0.474 * | 0.578 ** | 0.539 * | 0.528 * | 0.508 * | |
Right | −0.063 | −0.059 | 0.414 | 0.458 * | 0.388 | 0.389 | ||
Forearm Acc. Decrement (%) | Left | −0.007 | 0.010 | 0.205 | 0.329 | 0.394 | 0.433 | |
Right | −0.313 | −0.318 | 0.075 | 0.143 | 0.205 | 0.273 | ||
JUMPING PUSH-UP | Shoulder Elevation ROM | Left | 0.052 | 0.174 | 0.031 | 0.308 | −0.089 | 0.122 |
Right | 0.069 | 0.238 | −0.057 | 0.374 | 0.021 | 0.243 | ||
Elbow Flexo-Extension ROM | Left | 0.394 | 0.350 | 0.339 | 0.075 | 0.464 * | 0.098 | |
Right | 0.276 | 0.268 | 0.468 * | 0.104 | 0.506 * | 0.088 | ||
Humerus Max. Acc. | Left | 0.626 ** | 0.640 ** | 0.373 | 0.366 | 0.396 | −0.056 | |
Right | 0.490 * | 0.545 * | 0.431 | 0.318 | 0.436 | 0.051 | ||
Humerus Max. Dec. | Left | −0.235 | −0.012 | 0.450 * | −0.140 | 0.272 | −0.250 | |
Right | −0.198 | 0.072 | 0.539 * | −0.104 | 0.331 | −0.193 | ||
Forearm Max. Acc. | Left | 0.628 ** | 0.628 ** | 0.460 * | 0.405 | 0.463 * | 0.019 | |
Right | 0.50 * | 0.556 * | 0.501 * | 0.348 | 0.529 * | 0.132 | ||
Forearm Max. Dec. | Left | 0.015 | 0.003 | −0.462 * | −0.193 | −0.573 ** | −0.003 | |
Right | −0.078 | −0.069 | −0.597 ** | −0.262 | −0.701 *** | 0.139 |
Model | Dependent Variable | Independent Variables | Estimator | R | R2 | AIC | BIC | RMSE | F | p |
---|---|---|---|---|---|---|---|---|---|---|
#1 | Maximum Humerus Acceleration—Left [CMJ] | Constant | −0.41601 | 0.896 | 0.802 | 32.3 | 37.3 | 0.423 | 21.6 | <0.001 |
GRF Left | 0.00432 *** | |||||||||
COP_X Left | 0.04522 ** | |||||||||
COP_Y Left | −0.01166 | |||||||||
#2 | Maximum Humerus Acceleration—Right [CMJ] | Constant | −0.97582 | 0.904 | 0.817 | 33.4 | 38.4 | 0.434 | 23.8 | <0.001 |
GRF Right | 0.00454 *** | |||||||||
COP_X Right | 0.11994 * | |||||||||
COP_Y Right | −0.03120 | |||||||||
#3 | Maximum Humerus Acceleration—Left [JUMPING] | Constant | −0.57262 | 0.763 | 0.583 | 35.7 | 40.7 | 0.460 | 7.45 | 0.002 |
GRF Left | 0.00149 *** | |||||||||
COP_X Left | 0.03652 | |||||||||
COP_Y Left | −0.00338 | |||||||||
#4 | Maximum Humerus Acceleration—Right [JUMPING] | Constant | 0.46111 | 0.575 | 0.330 | 43.5 | 48.5 | 0.559 | 2.63 | 0.086 |
GRF Right | 0.00130 | |||||||||
COP_X Right | 0.02044 | |||||||||
COP_Y Right | −0.00892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Pérez, L.; Su, E.Y.-S.; Cuesta-Vargas, A.I.; Kerr, G.K. In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study. Sensors 2025, 25, 5333. https://doi.org/10.3390/s25175333
Ramírez-Pérez L, Su EY-S, Cuesta-Vargas AI, Kerr GK. In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study. Sensors. 2025; 25(17):5333. https://doi.org/10.3390/s25175333
Chicago/Turabian StyleRamírez-Pérez, Laura, Eric Yung-Sheng Su, Antonio Ignacio Cuesta-Vargas, and Graham K. Kerr. 2025. "In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study" Sensors 25, no. 17: 5333. https://doi.org/10.3390/s25175333
APA StyleRamírez-Pérez, L., Su, E. Y.-S., Cuesta-Vargas, A. I., & Kerr, G. K. (2025). In Vivo (In)Stability Shoulder Assessment in Healthy Active Adults Using Force Plates and a Motion Capture System: A Cross-Sectional Study. Sensors, 25(17), 5333. https://doi.org/10.3390/s25175333