Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs
Abstract
1. Introduction
Advantage Dimension | Technical Mechanism | Agricultural Application Scenario | References |
---|---|---|---|
Low-Latency Response | Data source-end decision-making | Real-time adjustment of inter-plant distance in autonomous planters | [5] |
Distributed computing sink | Plant phenotypic feature extraction | [6] | |
Parallel computing acceleration | Multi-sensor fusion perception in agricultural machinery | [10] | |
Bandwidth Optimization | Edge data filtering and feature extraction | High-definition image transmission by UAVs | [11,12] |
Dynamic transmission protocol adaptation | Agricultural machinery multi-sensor monitoring | [13] | |
Localized Data Processing | Local processing of raw data streams + lightweight model pre-deployment | Autonomous navigation of hillside orchards | [14] |
Minimization of network exposure | Protection of private data in farmland | [15] |
- We constructed a technical framework for edge computing-enabled smart agriculture, comprising a perception layer, a computation layer, and a communication layer.
- We systematically reviewed the applications of edge computing in three core domains: precision crop management, intelligent agricultural machinery control, and whole-chain agricultural product traceability.
- We conducted an in-depth analysis of critical challenges, including communication reliability, multi-source vibration coupling mechanisms, and multi-dimensional energy constraints. Furthermore, we proposed future research directions, such as optimization of data processing and intelligent decision-making, communication network enhancements, and breakthroughs in energy management and sustainability.
2. Technology Layer: Edge Computing Technology Architecture
2.1. Edge Sensing Technology
2.1.1. Crop Physiological Monitoring
2.1.2. Environment Sensing Technology
2.1.3. Agricultural Product Quality Detection
2.1.4. Low-Power Design
2.1.5. Novel Detection Technology
2.2. Lightweight Edge Intelligence
2.2.1. Model Compression and Acceleration
2.2.2. Real-Time Decision Engine
2.3. Edge–Cloud Collaboration Architecture
2.3.1. Terminal Layer
2.3.2. Edge Layer
2.3.3. Cloud
2.3.4. Communication Protocol Optimization
3. Application Layer: Agricultural Typical Scenario Practice
3.1. Precision Planting Management
3.1.1. Crop Phenotype Monitoring
3.1.2. Pest and Disease Prevention and Control
3.2. Intelligent Agricultural Machine Control
3.2.1. Autopilot Systems
3.2.2. Operation Quality Optimization
3.2.3. Intelligent Suspension Control
3.3. Whole-Chain Traceability of Agricultural Products
3.3.1. Harvesting and Processing
3.3.2. Quality and Safety
4. Challenges and Future Directions
4.1. Challenges and Particularities
4.2. Future Evolution Pathways
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deng, C.; Che, W.W.; Wu, Z.G. A Dynamic Periodic Event-Triggered Approach to Consensus of Heterogeneous Linear Multiagent Systems With Time-Varying Communication Delays. IEEE Trans. Cybern. 2021, 51, 1812–1821. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kim, S.; Kuruoglu, N. Energy Harvesting Techniques for Wireless Sensor Networks/Radio-Frequency Identification: A Review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef]
- Chen, J.; Lian, Y.; Zou, R.; Zhang, S.; Ning, X.B.; Han, M.N. Real-time grain breakage sensing for rice combine harvesters using machine vision technology. Int. J. Agric. Biol. Eng. 2020, 13, 194–199. [Google Scholar] [CrossRef]
- Wang, S.G.; Zhao, Y.L.; Xu, J.L.; Yuan, J.; Hsu, C.H. Edge server placement in mobile edge computing. J. Parallel Distrib. Comput. 2019, 127, 160–168. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.H.; Zhang, T.F.; Zhang, P.C.; Yao, M.J.; Li, J.H.; Sun, Z.T.; Ma, G.X.; Chen, X.X.; Hu, J.P. Key Technologies in Intelligent Seeding Machinery for Cereals: Recent Advances and Future Perspectives. Agriculture 2025, 15, 8. [Google Scholar] [CrossRef]
- Wang, R.-F.; Qu, H.-R.; Su, W.-H. From sensors to insights: Technological trends in image-based high-throughput plant phenotyping. Smart Agric. Technol. 2025, 12, 101257. [Google Scholar] [CrossRef]
- Wang, R.F.; Su, W.H. The Application of Deep Learning in the Whole Potato Production Chain: A Comprehensive Review. Agriculture 2024, 14, 1225. [Google Scholar] [CrossRef]
- Yang, Z.X.; Li, Y.S.; Wang, R.F.; Hu, P.F.; Su, W.H. Deep Learning in Multimodal Fusion for Sustainable Plant Care: A Comprehensive Review. Sustainability 2025, 17, 5255. [Google Scholar] [CrossRef]
- Chen, J.S.; Ran, X.K. Deep Learning With Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Ren, J.K.; Yu, G.D.; He, Y.H.; Li, G.Y. Collaborative Cloud and Edge Computing for Latency Minimization. IEEE Trans. Veh. Technol. 2019, 68, 5031–5044. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, D.Y.; He, S.W.; Zhang, Y.X.; Li, T. A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms: Transparent Computing, Mobile Edge Computing, Fog Computing, and Cloudlet. ACM Comput. Surv. 2020, 52, 125. [Google Scholar] [CrossRef]
- Cao, K.Y.; Liu, Y.F.; Meng, G.J.; Sun, Q.M. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Futur. Gener. Comp. Syst. 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Hu, S.H.; Li, C.L.; Li, G.H.; Shi, W.S. Resource Scheduling in Edge Computing: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 2131–2165. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef]
- Miller, T.; Mikiciuk, G.; Durlik, I.; Mikiciuk, M.; Lobodzinska, A.; Snieg, M. The IoT and AI in Agriculture: The Time Is Now-A Systematic Review of Smart Sensing Technologies. Sensors 2025, 25, 3583. [Google Scholar] [CrossRef]
- Saini, A.K.; Yadav, A.K.; Dhiraj. A Comprehensive review on technological breakthroughs in precision agriculture: IoT and emerging data analytics. Eur. J. Agron. 2025, 163, 127440. [Google Scholar] [CrossRef]
- Liu, N.S.; Zhang, W.Y.; Liu, F.X.; Zhang, M.N.; Du, C.G.; Sun, C.L.; Cao, J.; Ji, S.W.; Sun, H. Development of a Crop Spectral Reflectance Sensor. Agronomy 2022, 12, 2139. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, M.Q.; Mao, H.P.; Zhu, W.J. Diagnosis of potassium nutrition level in Solanum lycopersicum based on electrical impedance. Biosyst. Eng. 2016, 147, 130–138. [Google Scholar] [CrossRef]
- Li, M.Q.; Li, J.Y.; Mao, H.P.; Wu, Y.Y. Diagnosis and detection of phosphorus nutrition level for Solanum lycopersicum based on electrical impedance spectroscopy. Biosyst. Eng. 2016, 143, 108–118. [Google Scholar] [CrossRef]
- Li, Z.K.; Mao, H.P.; Li, L.Z.; Wei, Y.Z.; Yu, Y.S.; Zhao, M.X.; Liu, Z. A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture 2024, 14, 2174. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Abu Bakar, E.; Othman, A.R. Smart Sensing with Edge Computing in Precision Agriculture for Soil Assessment and Heavy Metal Monitoring: A Review. Agriculture 2021, 11, 475. [Google Scholar] [CrossRef]
- Adade, S.; Lin, H.; Johnson, N.A.N.; Nunekpeku, X.; Aheto, J.H.; Ekumah, J.N.; Kwadzokpui, B.A.; Teye, E.; Ahmad, W.; Chen, Q.S. Advanced food contaminant detection through multi-source data fusion: Strategies, applications, and future perspectives. Trends Food Sci. Technol. 2025, 156, 104851. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, B.; Shen, C.; Liu, H.L.; Huang, J.C.; Tian, K.P.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Shi, B.; Sreeram, V.; Zhao, D.A.; Duan, S.L.; Jiang, J.M. A wireless sensor network-based monitoring system for freshwater fishpond aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar] [CrossRef]
- Han, Z.; Ahmad, W.; Rong, Y.N.; Chen, X.Y.; Zhao, S.G.; Yu, J.H.; Zheng, P.F.; Huang, C.C.; Li, H.H. A Gas Sensors Detection System for Real-Time Monitoring of Changes in Volatile Organic Compounds during Oolong Tea Processing. Foods 2024, 13, 1721. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.D.; Chen, Q.S. Evaluating aroma quality of black tea by an olfactory visualization system: Selection of feature sensor using particle swarm optimization. Food Res. Int. 2019, 126, 108605. [Google Scholar] [CrossRef]
- Huang, X.W.; Li, Z.H.; Xiaobo, Z.; Shi, J.Y.; Tahir, H.E.; Xu, Y.W.; Zhai, X.D.; Hu, X.T. Geographical origin discrimination of edible bird’s nests using smart handheld device based on colorimetric sensor array. J. Food Meas. Charact. 2020, 14, 514–526. [Google Scholar] [CrossRef]
- Jiang, H.; Deng, J.H.; Chen, Q.S. Olfactory sensor combined with chemometrics analysis to determine fatty acid in stored wheat. Food Control 2023, 153, 109942. [Google Scholar] [CrossRef]
- Geng, W.H.; Haruna, S.A.; Li, H.H.; Kademi, H.I.; Chen, Q.S. A Novel Colorimetric Sensor Array Coupled Multivariate Calibration Analysis for Predicting Freshness in Chicken Meat: A Comparison of Linear and Nonlinear Regression Algorithms. Foods 2023, 12, 720. [Google Scholar] [CrossRef]
- Camargo, J.R.; Orzari, L.O.; Rodrigues, J.D.; de Lima, L.F.; Paixao, T.; Fraceto, L.F.; Janegitz, B.C. Advancements in disposable electrochemical systems for sustainable agriculture monitoring: Trends, gaps, and applied examples. TrAC-Trends Anal. Chem. 2024, 180, 117968. [Google Scholar] [CrossRef]
- Liu, S.D.; Meng, S.Y.; Wang, M.; Li, W.J.; Dong, N.; Liu, D.; Li, Y.Y.; You, T.Y. In-depth interpretation of aptamer-based sensing on electrode: Dual-mode electrochemical-photoelectrochemical sensor for the ratiometric detection of patulin. Food Chem. 2023, 410, 135450. [Google Scholar] [CrossRef]
- Luo, L.J.; Ma, S.; Li, L.B.; Liu, X.H.; Zhang, J.Y.; Li, X.; Liu, D.; You, T.Y. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem. 2019, 292, 98–105. [Google Scholar] [CrossRef]
- Zhu, C.X.; Liu, D.; Li, Y.Y.; Chen, T.; You, T.Y. Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops. Food Chem. 2022, 373, 131443. [Google Scholar] [CrossRef]
- Xu, Y.W.; Zhang, W.; Shi, J.Y.; Li, Z.H.; Huang, X.W.; Zou, X.B.; Tan, W.L.; Zhang, X.N.; Hu, X.T.; Wang, X.; et al. Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables. Food Chem. 2020, 322, 126762. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.X.; Gao, C.B.; Gai, Z.Q.; He, Y.X.; Qian, Z.J.; Liu, Y.J.; Lei, H.T.; Sun, Y.M.; Xu, Z.L. Development of a highly sensitive and selective electrochemical immunosensor for controlling of rhodamine B abuse in food samples. Food Control 2022, 133, 108662. [Google Scholar] [CrossRef]
- Sharma, B.P.; Peelam, M.S.; Gupta, A.; Shekhar, C.; Chamola, V. A Comprehensive Survey on Data Converters for IoT Applications: Scope, Issues, and Future Directions. IEEE Internet Things J. 2025, 12, 18993–19017. [Google Scholar] [CrossRef]
- Wang, S.H.; Lin, L.; Wang, Z.L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462. [Google Scholar] [CrossRef]
- Du, X.J.; Du, W.H.; Sun, J.; Jiang, D. Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal-ligand charge transfer effect by Ti3C2 based Schottky junction. Food Chem. 2022, 385, 132731. [Google Scholar] [CrossRef]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.H.; Sun, Y.F.; Guo, S.; Wu, J.S. Green Industrial Internet of Things Architecture: An Energy-Efficient Perspective. IEEE Commun. Mag. 2016, 54, 48–54. [Google Scholar] [CrossRef]
- Mao, H.P.; Du, X.X.; Yan, Y.T.; Zhang, X.D.; Ma, G.X.; Wang, Y.F.; Liu, Y.; Wang, B.; Yang, X.Y.; Shi, Q. Highly sensitive detection of daminozide using terahertz metamaterial sensors. Int. J. Agric. Biol. Eng. 2022, 15, 180–188. [Google Scholar] [CrossRef]
- Zhang, X.D.; Duan, Z.H.; Mao, H.P.; Gao, H.Y.; Zuo, Z.Y. A lettuce moisture detection method based on terahertz time-domain spectroscopy. Cienc. Rural 2022, 52, e20210002. [Google Scholar] [CrossRef]
- Tong, Y.Q.; Ding, L.X.; Han, K.G.; Zou, X.B.; Wang, S.Y.; Wen, Z.; Ye, Y.X.; Ren, X.D. Detection of carbendazim in oranges with metal grating integrated microfluidic sensor in terahertz. Food Addit. Contam. Part A-Chem. 2022, 39, 1555–1564. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, X.; Yu, D.F.; Jiao, S.Y.; Han, X.; Zhang, S.L.; Yin, H.; Mao, H.P. Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. J. Food Process Eng. 2020, 43, 13544. [Google Scholar] [CrossRef]
- Li, H.H.; Luo, X.F.; Haruna, S.A.; Zareef, M.; Chen, Q.S.; Ding, Z.; Yan, Y.Y. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Sarma, K.K.; Das, K.K.; Mishra, V.; Bhuiya, S.; Kaplun, D. Learning Aided System for Agriculture Monitoring Designed Using Image Processing and IoT-CNN. IEEE Access 2022, 10, 41525–41536. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Peng, Y.; Liu, J.Z.; Wu, S. Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Tao, K.; Wang, A.C.; Shen, Y.D.; Lu, Z.M.; Peng, F.T.; Wei, X.H. Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion. Horticulturae 2022, 8, 904. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.Y.; Liu, J.Z. Fused-Deep-Features Based Grape Leaf Disease Diagnosis. Agronomy 2021, 11, 2234. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.Z.; Zhao, Y.Q.; Pan, Q.M.; Jin, K.; Xu, G.; Hu, Y.G. TS-YOLO: An All-Day and Lightweight Tea Canopy Shoots Detection Model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Zhang, T.F.; Zhou, J.H.; Liu, W.; Yue, R.C.; Yao, M.J.; Shi, J.W.; Hu, J.P. Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny. Agronomy 2024, 14, 931. [Google Scholar] [CrossRef]
- Zhao, C.T.; Wang, R.F.; Tu, Y.H.; Pang, X.X.; Su, W.H. Automatic Lettuce Weed Detection and Classification Based on Optimized Convolutional Neural Networks for Robotic Weed Control. Agronomy 2024, 14, 2838. [Google Scholar] [CrossRef]
- Wang, J.Z.; Gao, Z.H.; Zhang, Y.; Zhou, J.; Wu, J.Z.; Li, P.P. Real-Time Detection and Location of Potted Flowers Based on a ZED Camera and a YOLO V4-Tiny Deep Learning Algorithm. Horticulturae 2022, 8, 21. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Guo, Z.S.; Dong, Z.; Yang, K.C. TensorRT Implementations of Model Quantization on Edge SoC. In Proceedings of the 16th IEEE International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC), Singapore, 18–21 December 2023; pp. 486–493. [Google Scholar]
- Lin, L.; Liao, X.F.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1607. [Google Scholar] [CrossRef]
- Xia, X.Y.; Chen, F.F.; He, Q.; Grundy, J.; Abdelrazek, M.; Jin, H. Online Collaborative Data Caching in Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 281–294. [Google Scholar] [CrossRef]
- Sun, J.L.; Wang, Z.; Ding, S.H.; Xia, J.; Xing, G.Y. Adaptive disturbance observer-based fixed time nonsingular terminal sliding mode control for path-tracking of unmanned agricultural tractors. Biosyst. Eng. 2024, 246, 96–109. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.M.; Xu, L.Z.; Tang, Z. Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Gao, H.H.; Wang, X.J.; Wei, W.; Al-Dulaimi, A.; Xu, Y.S. Com-DDPG: Task Offloading Based on Multiagent Reinforcement Learning for Information-Communication-Enhanced Mobile Edge Computing in the Internet of Vehicles. IEEE Trans. Veh. Technol. 2024, 73, 348–361. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.H.; Fan, P.Y.; Fan, Q.; Wang, J.Z.; Letaief, K.B. URLLC-Awared Resource Allocation for Heterogeneous Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2024, 73, 11789–11805. [Google Scholar] [CrossRef]
- Arif, M.; Maya, J.A.; Anandan, N.; Pérez, D.A.; Tonello, A.M.; Zangl, H.; Rinner, B. Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey. IEEE Access 2024, 12, 193332–193364. [Google Scholar] [CrossRef]
- Jiang, H.; Ge, M.H.; Deng, J.H.; Chen, Q.S. Efficient detection of wheat mold degree using novel nano-composite colorimetric sensor. J. Food Compos. Anal. 2025, 137, 106874. [Google Scholar] [CrossRef]
- Nsouli, A.; El-Hajj, W.; Mourad, A. Reinforcement learning based scheme for on-demand vehicular fog formation. Veh. Commun. 2023, 40, 100571. [Google Scholar] [CrossRef]
- Bera, S.; Dey, T.; Mukherjee, A.; Buyya, R. E-CropReco: A dew-edge-based multi-parametric crop recommendation framework for internet of agricultural things. J. Supercomput. 2023, 79, 11965–11999. [Google Scholar] [CrossRef]
- Jin, M.Z.; Zhao, Z.; Chen, S.R.; Chen, J.Y. Improved piezoelectric grain cleaning loss sensor based on adaptive neuro-fuzzy inference system. Precis. Agric. 2022, 23, 1174–1188. [Google Scholar] [CrossRef]
- Luo, Y.S.; Wei, L.L.; Xu, L.Z.; Zhang, Q.; Liu, J.Y.; Cai, Q.B.; Zhang, W.B. Stereo-vision-based multi-crop harvesting edge detection for precise automatic steering of combine harvester. Biosyst. Eng. 2022, 215, 115–128. [Google Scholar] [CrossRef]
- Raeisi-Varzaneh, M.; Dakkak, O.; Habbal, A.; Kim, B.S. Resource Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues and Future Research Directions. IEEE Access 2023, 11, 25329–25350. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M.A. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Marinsek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf. Syst. 2022, 107, 101840. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.D.; Hu, J.; Liu, Y.R.; Liu, X.H. Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges. Int. J. Syst. Sci. 2021, 52, 3013–3034. [Google Scholar] [CrossRef]
- Wang, X.F.; Han, Y.W.; Wang, C.Y.; Zhao, Q.Y.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Z.H.; Ng, D.W.K.; Levorato, M.; Eldar, Y.C.; Debbah, M. Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing. IEEE J. Sel. Top. Signal Process. 2023, 17, 9–39. [Google Scholar] [CrossRef]
- Gago, J.; Estrany, J.; Estes, L.; Fernie, A.R.; Alorda, B.; Brotman, Y.; Flexas, J.; Escalona, J.M.; Medrano, H. Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture? Curr. Protoc. Plant Biol. 2020, 5, e20103. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Xu, S.Z.; Xu, X.A.; Zhu, Q.Z.; Meng, Y.; Yang, G.J.; Feng, H.K.; Yang, M.; Zhu, Q.L.; Xue, H.Y.; Wang, B.B. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Precis. Agric. 2023, 24, 2327–2349. [Google Scholar] [CrossRef]
- Agrawal, J.; Arafat, M.Y. Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones 2024, 8, 664. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, P.; Mao, H.P.; Gao, H.Y.; Li, Q.L. Detection of The Nutritional Status of Phosphorus in Lettuce Using THz Time-Domain Spectroscopy. Eng. Agric. 2021, 41, 599–608. [Google Scholar] [CrossRef]
- Lavanya, G.; Rani, C.; Ganeshkumar, P. An automated low cost IoT based Fertilizer Intimation System for smart agriculture. Sustain. Comput.-Inform. Syst. 2020, 28, 100300. [Google Scholar] [CrossRef]
- Xing, D.K.; Chen, X.L.; Wu, Y.Y.; Xu, X.J.; Chen, Q.; Li, L.; Zhang, C. Rapid prediction of the re-watering time point of Orychophragmus violaceus L. based on the online monitoring of electrophysiological indexes. Sci. Hortic. 2019, 256, 108642. [Google Scholar] [CrossRef]
- Sajitha, P.; Andrushia, A.D.; Anand, N.; Naser, M.Z. A review on machine learning and deep learning image-based plant disease classification for industrial farming systems. J. Ind. Inf. Integr. 2024, 38, 100572. [Google Scholar] [CrossRef]
- Badgujar, C.M.; Poulose, A.; Gan, H. Agricultural object detection with You Only Look Once (YOLO) Algorithm: A bibliometric and systematic literature review. Comput. Electron. Agric. 2024, 223, 109090. [Google Scholar] [CrossRef]
- Nagasubramanian, G.; Sakthivel, R.K.; Patan, R.; Sankayya, M.; Daneshmand, M.; Gandomi, A.H. Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System. IEEE Internet Things J. 2021, 8, 12847–12854. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.; Wang, C.; Wang, F.A. Lightweight Neural Network-Based Method for Identifying Early-Blight and Late-Blight Leaves of Potato. Applied Sciences 2023, 13, 1487. [Google Scholar] [CrossRef]
- Harbola, G.; Rawat, M.S.; Gupta, A.; Gupta, R. Intelligent Diagnosis of Potato Leaf Diseases using Deep Learning. In Proceedings of the 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, 3–4 May 2024; pp. 372–377. [Google Scholar]
- Devi, C.M.; Vishva, S.P.; Gopal, M.M. Cotton Leaf Disease Prediction and Diagnosis Using Deep Learning. In Proceedings of the International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 9–10 May 2024. [Google Scholar]
- Bhat, V.S.; Wang, Y. Revisiting the Control Systems of Autonomous Vehicles in the Agricultural Sector: A Systematic Literature Review. IEEE Access 2025, 13, 54686–54721. [Google Scholar] [CrossRef]
- Navone, A.; Martini, M.; Ambrosio, M.; Ostuni, A.; Angarano, S.; Chiaberge, M. GPS-free autonomous navigation in cluttered tree rows with deep semantic segmentation. Robot. Auton. Syst. 2025, 183, 104854. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chen, W.M.; Wei, X.H. Improved Field Obstacle Detection Algorithm Based on YOLOv8. Agriculture 2024, 14, 2263. [Google Scholar] [CrossRef]
- Lu, E.; Xu, L.Z.; Li, Y.M.; Tang, Z.; Ma, Z. Modeling of working environment and coverage path planning method of combine harvesters. Int. J. Agric. Biol. Eng. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Zhu, F.H.; Chen, J.; Guan, Z.H.; Zhu, Y.H.; Shi, H.; Cheng, K. Development of a combined harvester navigation control system based on visual simultaneous localization and mapping-inertial guidance fusion. J. Agric. Eng. 2024, 55, 1583. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.P.; Liu, J.X.; Yue, R.C.; Zhang, T.F.; Yao, M.J.; Li, J. Method for the navigation line recognition of the ridge without crops via machine vision. Int. J. Agric. Biol. Eng. 2024, 17, 230–239. [Google Scholar] [CrossRef]
- Tu, Y.H.; Wang, R.F.; Su, W.H. Active Disturbance Rejection Control-New Trends in Agricultural Cybernetics in the Future: A Comprehensive Review. Machines 2025, 13, 111. [Google Scholar] [CrossRef]
- Bayano-Tejero, S.; Sarri, D.; Sola-Guirado, R.R. Design and field validation of a Dual-Axle steering system for autonomous tractors . Comput. Electron. Agric. 2025, 231, 110000. [Google Scholar] [CrossRef]
- Soitinaho, R.; Väyrynen, V.; Oksanen, T. Heuristic cooperative coverage path planning for multiple autonomous agricultural field machines performing sequentially dependent tasks of different working widths and turn characteristics. Biosyst. Eng. 2024, 242, 16–28. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.X.; Wang, Y.N.; Mao, H.P. Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery. Int. J. Agric. Biol. Eng. 2024, 17, 27–36. [Google Scholar] [CrossRef]
- Hao, S.H.; Tang, Z.; Guo, S.B.; Ding, Z.; Su, Z. Model and Method of Fault Signal Diagnosis for Blockage and Slippage of Rice Threshing Drum. Agriculture 2022, 12, 1968. [Google Scholar] [CrossRef]
- Liang, Z.W.; Li, Y.M.; Xu, L.Z.; Zhao, Z.; Tang, Z. Optimum design of an array structure for the grain loss sensor to upgrade its resolution for harvesting rice in a combine harvester. Biosyst. Eng. 2017, 157, 24–34. [Google Scholar] [CrossRef]
- Liang, Z.W.; Li, Y.M.; Xu, L.Z.; Zhao, Z. Sensor for monitoring rice grain sieve losses in combine harvesters. Biosyst. Eng. 2016, 147, 51–66. [Google Scholar] [CrossRef]
- Li, D.P.; Wang, Z.M.; Liang, Z.W.; Zhu, F.Y.; Xu, T.B.; Cui, X.Y.; Zhao, P.G. Analyzing Rice Grain Collision Behavior and Monitoring Mathematical Model Development for Grain Loss Sensors. Agriculture 2022, 12, 839. [Google Scholar] [CrossRef]
- Qian, P.F.; Lu, T.; Shen, C.; Chen, S.R. Influence of vibration on the grain flow sensor during the harvest and the difference elimination method. Int. J. Agric. Biol. Eng. 2021, 14, 149–162. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Cui, B.B.; Yu, Z.L.; Gao, Y.Y.; Wei, X.H. Tillage Depth Detection and Control Based on Attitude Estimation and Online Calibration of Model Parameters. Agriculture 2024, 14, 2130. [Google Scholar] [CrossRef]
- Nisha, K.; Upadhyay, G.; Patel, B.; Sihag, N.; Choudhary, S.; Rani, V. Analysis of soil compaction induced beneath the working depth due to tilling action of different active tillage machinery. Span. J. Agric. Res. 2023, 21, e0210. [Google Scholar] [CrossRef]
- Chandio, F.A.; Li, Y.M.; Xu, L.Z.; Ma, Z.; Ahmad, F.; Cuong, D.M.; Lakhiar, I.A. Predicting 3D forces of disc tool and soil disturbance area using fuzzy logic model under sensor based soil-bin. Int. J. Agric. Biol. Eng. 2020, 13, 77–84. [Google Scholar] [CrossRef]
- Cui, L.F.; Xue, X.Y.; Le, F.X.; Mao, H.P.; Ding, S.M. Design and experiment of electro hydraulic active suspension for controlling the rolling motion of spray boom. Int. J. Agric. Biol. Eng. 2019, 12, 72–81. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, L.; Wang, R.C.; Xu, X.; Shen, Y.J.; Liu, Y.L. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar] [CrossRef]
- Fan, S.X.; Li, J.B.; Xia, Y.; Tian, X.; Guo, Z.M.; Huang, W.Q. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol. Technol. 2019, 151, 79–87. [Google Scholar] [CrossRef]
- Sheng, R.; Cheng, W.; Li, H.H.; Ali, S.; Agyekum, A.A.; Chen, Q.S. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy. Postharvest Biol. Technol. 2019, 156, 110952. [Google Scholar] [CrossRef]
- Dong, C.W.; Zhu, H.K.; Wang, J.J.; Yuan, H.B.; Zhao, J.W.; Chen, Q.S. Prediction of black tea fermentation quality indices using NIRS and nonlinear tools. Food Sci. Biotechnol. 2017, 26, 853–860. [Google Scholar] [CrossRef]
- Zheng, P.F.; Adade, S.; Rong, Y.N.; Zhao, S.G.; Han, Z.; Gong, Y.T.; Chen, X.Y.; Yu, J.H.; Huang, C.C.; Lin, H. Online System for Monitoring the Degree of Fermentation of Oolong Tea Using Integrated Visible-Near-Infrared Spectroscopy and Image-Processing Technologies. Foods 2024, 13, 1708. [Google Scholar] [CrossRef]
- Yin, L.M.; Cai, J.R.; Jayan, H.; Yosri, N.; Majeed, U.; Guo, Z.M.; Zou, X.B. Assembly of stabilized dendritic magnetic ferric-silver nanocomposite with gold nanoparticles for sensitive detection of ochratoxin A using SERS aptasensor. Food Control 2024, 165, 110704. [Google Scholar] [CrossRef]
- Wang, L.; Haruna, S.A.; Ahmad, W.; Wu, J.Z.; Chen, Q.S.; Ouyang, Q. Tunable multiplexed fluorescence biosensing platform for simultaneous and selective detection of paraquat and carbendazim pesticides. Food Chem. 2022, 388, 132950. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Jiao, T.H.; Liu, S.S.; Xu, Y.; Viswadevarayalu, A.; Li, H.H.; Chen, Q.S. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem. 2021, 338, 127796. [Google Scholar] [CrossRef]
- Hassan, M.M.; Yi, X.; Zareef, M.; Li, H.H.; Chen, Q.S. Recent advancements of optical, electrochemical, and photoelectrochemical transducer-based microfluidic devices for pesticide and mycotoxins in food and water. Trends Food Sci. Technol. 2023, 142, 104230. [Google Scholar] [CrossRef]
- Wang, A.C.; Sheng, R.; Li, H.H.; Agyekum, A.A.; Hassan, M.M.; Chen, Q.S. Development of near-infrared online grading device for long jujube. J. Food Process Eng. 2020, 43, e13411. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, A.C.; Lv, Z.Z.; Gao, Z.M. Nondestructive measurement of kiwifruit firmness, soluble solid content (SSC), titratable acidity (TA), and sensory quality by vibration spectrum. Food Sci. Nutr. 2020, 8, 1058–1066. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhao, J.W.; Pan, W.X.; Chen, Q.S. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis. Food Chem. 2016, 190, 135–141. [Google Scholar] [CrossRef]
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X.C. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE-CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Bi, X.Y.; Li, L.B.; Liu, X.H.; Luo, L.J.; Cheng, Z.L.; Sun, J.Y.; Cai, Z.B.; Liu, J.M.; You, T.Y. Inner filter effect-modulated ratiometric fluorescence aptasensor based on competition strategy for zearalenone detection in cereal crops: Using mitoxantrone as quencher of CdTe QDs@SiO2. Food Chem. 2021, 349, 129171. [Google Scholar] [CrossRef]
- Bi, X.Y.; Li, L.B.; Luo, L.J.; Liu, X.H.; Li, J.M.; You, T.Y. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Wang, P.Y.; Li, H.H.; Hassan, M.M.; Guo, Z.M.; Zhang, Z.Z.; Chen, Q.S. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.J.; Ahmad, W.; Li, H.H.; Chen, Q.S. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef]
- Li, S.H.; Wu, J.Z.; Zhang, S.; Jiao, T.H.; Wei, J.; Chen, X.M.; Chen, Q.M.; Chen, Q.S. Inner filter effect-based upconversion nanosensor for rapid detection of thiram pesticides using upconversion nanoparticles and dithizone-cadmium—Cadmium complexes. Food Chem. 2024, 434, 137438. [Google Scholar] [CrossRef]
- Li, S.H.; Zhang, S.; Wu, J.Z.; Khan, I.M.; Chen, M.; Jiao, T.H.; Wei, J.; Chen, X.M.; Chen, Q.M.; Chen, Q.S. Upconversion fluorescence nanosensor based on enzymatic inhibited and copper-triggered o-phenylenediamine oxidation for the detection of dimethoate pesticides. Food Chem. 2024, 453, 139666. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.F.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X.Y. A Survey on the Edge Computing for the Internet of Things. IEEE Access 2018, 6, 6900–6919. [Google Scholar] [CrossRef]
- Jing, T.T.; Tang, Z.; Ding, Z.; Liang, Y.Q.; Fang, M.; Wang, T. Paddy Soil Compaction Effect Undergoing Multi-Dimensional Dynamic Load of Combine Harvester Crawler. Agriculture 2024, 14, 202. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of soil EC for the prediction of soil nutrient regime under different soil water and organic matter contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Yang, Y.F.; Fu, S.; Feng, K.Y.; Han, X.; Hu, Y.Y.; Zhu, Q.Z.; Wei, X.H. Analysis of Vibration Characteristics of Tractor-Rotary Cultivator Combination Based on Time Domain and Frequency Domain. Agriculture 2024, 14, 1139. [Google Scholar] [CrossRef]
- Liang, Z.W. Selecting the proper material for a grain loss sensor based on DEM simulation and structure optimization to improve monitoring ability. Precis. Agric. 2021, 22, 1120–1133. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhang, Y.; Gu, R.R. Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Zhou, H.T.; Jia, W.D.; Li, Y.; Ou, M.X. Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology. Agriculture 2021, 11, 1011. [Google Scholar] [CrossRef]
- Nethala, P.; Um, D.; Vemula, N.; Montero, O.F.; Lee, K.; Bhandari, M. Techniques for Canopy to Organ Level Plant Feature Extraction via Remote and Proximal Sensing: A Survey and Experiments. Remote Sens. 2024, 16, 4370. [Google Scholar] [CrossRef]
- Zheng, W.Y. The survey of SFM Algorithm. In Proceedings of the 2nd International Conference on Mechatronics and Information Technology (ICMIT), Xi’an, China, 26–27 August 2017; pp. 376–379. [Google Scholar]
- Ito, K.; Ito, T.; Aoki, T. PM-MVS: PatchMatch multi-view stereo. Mach. Vis. Appl. 2023, 34, 32. [Google Scholar] [CrossRef]
- Wang, B.Z.; Que, K.X.; Tang, Z.; Sun, M.Y.; Lian, Y.; Wang, H.Y. Multivariate Structural Vibration Coupling Response of the Self-Propelled Straw Pickup Baler Under Time-Varying Loads. Agriculture 2024, 14, 1960. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.Z.; Gao, Z.P.; Lu, E.; Li, Y.M. Effect of Vibration on Rapeseed Header Loss and Optimization of Header Frame. Trans. ASABE 2021, 64, 1247–1258. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, Y.B.; Ji, K.Z.; Zhu, R.H. A Fault Diagnosis Method for a Differential Inverse Gearbox of a Crawler Combine Harvester Based on Order Analysis. Agriculture 2022, 12, 1300. [Google Scholar] [CrossRef]
- Zhu, J.; Ouyang, X.; Jiang, Z.; Xu, Y.; Xue, H.; Yue, H.; Feng, H. In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module. Sensors 2025, 25, 4617. [Google Scholar] [CrossRef]
- Tao, Y.K.; Ge, C.; Feng, H.; Xue, H.T.; Yao, M.Y.; Tang, H.H.; Liao, Z.Q.; Chen, P. A novel approach for adaptively separating and extracting compound fault features of the in-wheel motor bearing. ISA Trans. 2025, 159, 337–351. [Google Scholar] [CrossRef]
- Feng, H.; Tao, Y.K.; Feng, J.B.; Zhang, Y.L.; Xue, H.T.; Wang, T.S.; Xu, X.; Chen, P. Fault-Tolerant Collaborative Control of Four-Wheel-Drive Electric Vehicle for One or More In-Wheel Motors’ Faults. Sensors 2025, 25, 1540. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Hu, Y.Y.; Yang, Y.F.; Feng, K.Y.; Han, X.; Li, P.Y.; Zhu, Y.Y.; Song, Q. Optimization of Operating Parameters for Straw Returning Machine Based on Vibration Characteristic Analysis. Agronomy 2024, 14, 2388. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Yang, Y.F.; Hu, Y.Y.; Han, X.; Feng, K.Y.; Li, P.Y.; Wei, X.H.; Zhai, C.Y. Study on Operating Vibration Characteristics of Different No-Tillage Planter Row Units in Wheat Stubble Fields. Agriculture 2024, 14, 1878. [Google Scholar] [CrossRef]
- Guillén, M.A.; Llanes, A.; Imbernón, B.; Martínez-España, R.; Bueno-Crespo, A.; Cano, J.C.; Cecilia, J.M. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J. Supercomput. 2021, 77, 818–840. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Chikangaise, P.; Shi, W.D.; Chen, W.H.; Yuan, S.Q. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Jain, R.K.; Mukherjee, A.; Karmakar, P.; Banerjee, A.; Akbarov, H.; Hasanov, S. Experimental performance of soil monitoring system using IoT technique for automatic drip irrigation. Int. J. Commun. Syst. 2023, 36, e5617. [Google Scholar] [CrossRef]
- Pang, Y.Y.; Li, H.; Tang, P.; Chen, C. Irrigation scheduling of pressurized irrigation networks for minimizing energy consumption. Irrig. Drain. 2023, 72, 268–283. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Futa, B.; Gmitrowicz-Iwan, J.; Skersiene, A.; Slepetiene, A.; Parasotas, I. Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability 2024, 16, 9481. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.W.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2024, 14, 47. [Google Scholar] [CrossRef]
- Shi, W.S.; Cao, J.; Zhang, Q.; Li, Y.H.Z.; Xu, L.Y. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Darko, R.O.; Yuan, S.Q.; Hong, L.; Liu, J.P.; Yan, H.F. Irrigation, a productive tool for food security—A review. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2016, 66, 191–206. [Google Scholar] [CrossRef]
- Pang, Y.Y.; Tang, P.; Li, H.; Marinello, F.; Chen, C. Optimization of sprinkler irrigation scheduling scenarios for reducing irrigation energy consumption. Irrig. Drain. 2024, 73, 1329–1343. [Google Scholar] [CrossRef]
- Yan, H.F.; Acquah, S.J.; Zhang, J.Y.; Wang, G.Q.; Zhang, C.; Darko, R.O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Hu, J.P.; Pan, J.H.; Dai, B.W.; Chai, X.Y.; Sun, Y.X.; Xu, L.Z. Development of an Attitude Adjustment Crawler Chassis for Combine Harvester and Experiment of Adaptive Leveling System. Agronomy 2022, 12, 717. [Google Scholar] [CrossRef]
- Gómez, B.; Coronado, E.; Villalón, J.; Garrido, A. Energy-focused simulation of edge computing architectures in 5G networks. J. Supercomput. 2024, 80, 12564–12584. [Google Scholar] [CrossRef]
- Muñoz, O.; Pascual-Iserte, A.; Vidal, J. Optimization of Radio and Computational Resources for Energy Efficiency in Latency-Constrained Application Offloading. IEEE Trans. Veh. Technol. 2015, 64, 4738–4755. [Google Scholar] [CrossRef]
- Salmani, M.; Davidson, T.N. Energy-Optimal Multiple Access Computation Offloading: Signalling Structure and Efficient Communication Resource Allocation. IEEE Trans. Signal Process. 2020, 68, 1646–1661. [Google Scholar] [CrossRef]
- Banka, K.; Suo, K.; Shi, Y.; Baidya, S. A Study of State-of-the-art Energy Saving on Edges. In Proceedings of the ACM Southeast Conference (ACMSE), Virtual Event, 15–17 April 2021; pp. 224–228. [Google Scholar]
- Muñoz, O.; Iserte, A.P.; Vidal, J.; Molina, M. Energy-Latency Trade-off for Multiuser Wireless Computation Offloading. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 29–33. [Google Scholar]
- Raza, A.; Hu, Y.G.; Lu, Y.Z. Improving carbon flux estimation in tea plantation ecosystems: A machine learning ensemble approach. Eur. J. Agron. 2024, 160, 127297. [Google Scholar] [CrossRef]
- Shen, Y.H.; Gao, J.M.; Jin, Z.P. Research on Acoustic Signal Identification Mechanism and Denoising Methods of Combine Harvesting Loss. Agronomy 2024, 14, 1816. [Google Scholar] [CrossRef]
Data Type | Typical Application Scenario | Real-Time Requirement | Priority |
---|---|---|---|
Original environmental and data | Soil temperature, light intensity | Medium | Medium |
Processed data | Disease and pest feature extraction | Medium | Low |
Model parameters and control instructions | Synchronization of irrigation/fertilization decision-making model parameters | Low | Medium |
Control data | Agricultural route planning, irrigation and machine start-up instructions | Extremely High | Highest |
Emergency and fault data | Extreme weather alerts, equipment fault warnings | High | Highest |
Technical Category | Core Advantages | Technical Challenges | Potential Application Scenarios | References |
---|---|---|---|---|
Crop Physiological Monitoring | Real-time, non-destructive interpretation of physiological processes; provides basis for precise nutrition and water regulation. | Deployment and maintenance complexity; challenges in multimodal data fusion. | Precision irrigation scheduling, variable-rate fertilization, early-stage stress alert | [18,19] |
Environmental Sensing Technology | Enhances monitoring robustness in complex field environments; on-site preprocessing alleviates bandwidth constraints. | Calibration and synchronization of multi-source heterogeneous sensor data. | Field microclimate monitoring, pest and disease early warning, soil moisture mapping. | [22,23] |
Agricultural Product Inspection | n-situ, rapid, and non-destructive inspection; miniaturization. | Complex matrix interference; environmental fluctuations affecting detection stability. | Agricultural product quality grading, rapid food safety screening, origin traceability. | [27,31] |
Low-Power Design | Overcomes energy constraints to support long-term maintenance-free operation. | Stability and efficiency of environmental energy harvesting; optimization of dynamic scheduling algorithms. | Long-term monitoring in remote fields, unattended sensor nodes. | [37,38] |
Novel Detection Technologies | High sensitivity and non-destructive internal composition analysis; miniaturization and low reagent consumption. | High equipment cost and operational complexity. | Grain/fruit and vegetable quality assessment, on-chip rapid pesticide residue detection. | [42,45] |
Model Compression and Acceleration | Overcomes computational and energy constraints of devices to enable efficient inference. | Accuracy-loss trade-off from model compression; hardware platform compatibility. | Large-scale field monitoring, multi-machinery collaboration. | [56,57] |
Real-time Decision Engine | High robustness against field uncertainties; millisecond-level response meets high-speed operation requirements. | Difficulties in accurate modeling; complexity in designing adaptive parameter adjustment laws. | Unmanned farm machinery, precise path tracking, coordinated multi-machinery operation scheduling. | [58,60] |
Edge–Cloud Collaborative Architecture | Clear division of tasks in a hierarchical architecture; adapts to dynamic and variable field network conditions. | Limited resources of terminal devices; complexity in distributed node management and coordination. | Preliminary sensor data cleaning/feature extraction, real-time machinery control, farm-level resource planning. | [65,70] |
Application Field | Innovative Technology | Core Mechanism | Application Value | References |
---|---|---|---|---|
Non-destructive Detection | Near-infrared Spectroscopy | Molecular vibration absorption characteristics at specific wavelengths | Reducing raw material supply standardization deviation | [107,108] |
Real-time Monitoring | Multispectral Monitoring System | Multispectral image reflection indicators | Improving process controllability | [109,110] |
Mycotoxin Detection | Aptamer-based Biosensing | Specific aptamer binding with labeling and signal conversion | Ensuring food safety | [33,111] |
Pesticide Residue Analysis | Multi-mode Integrated Detection | Multi-signal fusion and on-site rapid analysis | Reducing pesticide residue risks and ensuring food safety | [112,113] |
Field Integrated Platform | Microfluidic Multi-mode Sensing | Multi-mode coordination | Promoting rapid transformation from laboratory to on-site standardized testing | [114] |
Bottleneck Dimension | Agricultural Scenario Specificity | Core Impact | References |
---|---|---|---|
Communication Reliability | Terrain shielding, dynamic soil dielectric properties, and agricultural machinery vibration | Significant increase in packet loss rate of critical data transmission | [125,129] |
Multi-source Vibration Coupling | Mobile platforms, non-uniform terrain | Structural integrity damage to key agricultural components, reduced operational quality | [136,137] |
Multi-dimensional Energy Constraints | Energy instability and energy-computing synergy conflicts | Degradation of the reliability of precision agricultural systems | [150,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, R.; Zhang, H.; Li, G.; He, J. Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs. Sensors 2025, 25, 5302. https://doi.org/10.3390/s25175302
Gong R, Zhang H, Li G, He J. Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs. Sensors. 2025; 25(17):5302. https://doi.org/10.3390/s25175302
Chicago/Turabian StyleGong, Ran, Hongyang Zhang, Gang Li, and Jiamin He. 2025. "Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs" Sensors 25, no. 17: 5302. https://doi.org/10.3390/s25175302
APA StyleGong, R., Zhang, H., Li, G., & He, J. (2025). Edge Computing-Enabled Smart Agriculture: Technical Architectures, Practical Evolution, and Bottleneck Breakthroughs. Sensors, 25(17), 5302. https://doi.org/10.3390/s25175302