Physics-Informed Directed Graph Network-Based Temperature Forecasting Model
Abstract
1. Introduction
- (1)
- A directed graph adjacency matrix was built based on the locations of temperature sensors, providing an explicit physics-guided module for modeling spatial and temporal relationships between temperature data. It can also describe the directional impacts between temperature data.
- (2)
- A directed-graph-guided attention module and gating module were developed to capture the spatial and temporal relationships between temperature data across different sensors. Such physical informed features will greatly facilitate temperature prediction performance.
- (3)
- A directed-graph-based fusion module was designed to integrate the spatial and temporal features for temperature prediction, demonstrating superior performance over real-world datasets collected in southern China.
2. Data Used and Methods
2.1. Study Area and Data Used
2.2. Problem Formulation
2.3. Methods
2.3.1. Directed Graph Design Module
2.3.2. Directed-Graph-Based Attention Module
2.3.3. Directed-Graph-Based Gate Module
2.3.4. Physics-Informed Fusion Module
3. Results and Discussion
3.1. Numerical Experiments
3.2. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Bai, Q.; Du, W. The World Is Different Because of You: Global Warming, Technological Progress and Economic Development. Struct. Change Econ. Dyn. 2025, 74, 202–211. [Google Scholar] [CrossRef]
- Seager, R.; Cane, M.; Henderson, N.; Lee, D.-E.; Abernathey, R.; Zhang, H. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 2019, 9, 517–522. [Google Scholar] [CrossRef]
- Meque, A.; Gamedze, S.; Moitlhobogi, T.; Booneeady, P.; Samuel, S.; Mpalang, L. Numerical Weather Prediction and Climate Modelling: Challenges and Opportunities for Improving Climate Services Delivery in Southern Africa. Clim. Serv. 2021, 23, 100243. [Google Scholar] [CrossRef]
- Rosa, L.; He, L. Global Multi-Model Projections of Green Water Scarcity Risks in Rainfed Agriculture under 1.5 °C and 3 °C Warming. Agric. Water Manag. 2025, 314, 109519. [Google Scholar] [CrossRef]
- Ueyama, H. Compiling an Hourly Gridded Dataset for Surface Air Temperature at 50-M Resolution Using Radiative Cooling Scale and Numerical Weather Prediction Model Outputs. Agric. For. Meteorol. 2024, 350, 109991. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A. Aerosol as a Critical Factor Causing Forecast Biases of Air Temperature in Global Numerical Weather Prediction Models. Sci. Bull. 2021, 66, 1917–1924. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Z.; Cheng, H.; Zheng, H.; Cai, D.; Feng, Y. A Novel Global Average Temperature Prediction Model—Based on Gm-ARIMA Combination Model. Earth Sci. Inf. 2024, 17, 853–866. [Google Scholar] [CrossRef]
- Kumari, S.; Muthulakshmi, P. SARIMA Model: An Efficient Machine Learning Technique for Weather Forecasting. Procedia Comput. Sci. 2024, 235, 656–670. [Google Scholar] [CrossRef]
- Gao, M.; Wu, Q.; Li, J.; Wang, B.; Zhou, Z.; Liu, C.; Wang, D. Temperature Prediction of Solar Greenhouse Based on Narx Regression Neural Network. Sci. Rep. 2023, 13, 1563. [Google Scholar] [CrossRef]
- Paniagua-Tineo, A.; Salcedo-Sanz, S.; Casanova-Mateo, C.; Ortiz-García, E.G.; Cony, M.A.; Hernández-Martín, E. Prediction of Daily Maximum Temperature Using a Support Vector Regression Algorithm. Renew. Energy 2011, 36, 3054–3060. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, Y.; Liu, C.; Song, X.; Li, X.; Min, W. Dataset Bias in Few-Shot Image Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 229–246. [Google Scholar] [CrossRef]
- Tsutsui, S.; Fu, Y.; Crandall, D. Reinforcing Generated Images Via Meta-Learning for One-Shot Fine-Grained Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 1455–1463. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Liu, X.; Gao, B. Scene Adaptive Building Individual Segmentation Based on Large-Scale Airborne Lidar Point Clouds. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, F.; Zhang, J.; Bao, K.; Wang, Q.; He, X. Collm: Integrating Collaborative Embeddings into Large Language Models for Recommendation. IEEE Trans. Knowl. Data Eng. 2025, 37, 2329–2340. [Google Scholar] [CrossRef]
- Jin, B.; Liu, G.; Han, C.; Jiang, M.; Ji, H.; Han, J. Large Language Models on Graphs: A Comprehensive Survey. IEEE Trans. Knowl. Data Eng. 2024, 36, 8622–8642. [Google Scholar] [CrossRef]
- Han, L.; Chen, M.; Chen, K.; Chen, H.; Zhang, Y.; Lu, B.; Song, L.; Qin, R. A Deep Learning Method for Bias Correction of Ecmwf 24–240 H Forecasts. Adv. Atmos. Sci. 2021, 38, 1444–1459. [Google Scholar] [CrossRef]
- Rasp, S.; Lerch, S. Neural Networks for Postprocessing Ensemble Weather Forecasts. Mon. Weather Rev. 2018, 146, 3885–3900. [Google Scholar] [CrossRef]
- Han, J.M.; Ang, Y.Q.; Malkawi, A.; Samuelson, H.W. Using Recurrent Neural Networks for Localized Weather Prediction with Combined Use of Public Airport Data and on-Site Measurements. Build. Environ. 2021, 192, 107601. [Google Scholar] [CrossRef]
- Yang, H.; Yoon, S.; Lee, H.-T.; Kim, K.S.; Han, H.-J.; Park, Y.-J. Abnormal High Water Temperature Prediction in Nearshore Waters around the Korean Peninsula Using Ecmwf Era5 Data and a Deep Learning Model. J. Sea Res. 2024, 202, 102546. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Monthly Climate Prediction Using Deep Convolutional Neural Network and Long Short-Term Memory. Sci. Rep. 2024, 14, 17748. [Google Scholar] [CrossRef]
- Kreuzer, D.; Munz, M.; Schlüter, S. Short-Term Temperature Forecasts Using a Convolutional Neural Network—An Application to Different Weather Stations in Germany. Mach. Learn. Appl. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Zhou, J.; Tian, Q. Prediction of Hourly Air Temperature Based on Cnn–Lstm. Geomat. Nat. Hazards Risk 2022, 13, 1962–1986. [Google Scholar] [CrossRef]
- Yang, H.; Chen, C.; Xue, X. Coupled Convolutional Neural Network with Long Short-Term Memory Network for Predicting Lake Water Temperature. J. Hydrol. 2025, 655, 132878. [Google Scholar] [CrossRef]
- Deng, D.; Wang, Y.; Zhong, Z.; Wang, X.; Yao, Y. A Deep-Learning-Based Proxy Model for Fast Prediction of Temperature During CO2 Circulation in Hydrothermal Reservoir. Appl. Therm. Eng. 2025, 273, 126473. [Google Scholar] [CrossRef]
- Dai, H.; Lei, F.; Wei, G.; Zhang, X.; Lin, R.; Zhang, W.; Shang, S. Sea Surface Temperature Prediction by Stacked Generalization Ensemble of Deep Learning. Deep Sea Res. Part I 2024, 209, 104343. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, X.; Bi, X.; Huang, X.; Zhao, X.; Qiao, B. Time-Series Graph Network for Sea Surface Temperature Prediction. Big Data Res. 2021, 25, 100237. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; He, X.; Yu, J.; Xu, L. A Three-Dimensional Dynamic Spatial-Temporal Graph Neural Network for Ocean Temperature Field Prediction. Eng. Appl. Artif. Intell. 2025, 149, 110492. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Z.; Yu, J.; Xu, L. Global Spatiotemporal Graph Attention Network for Sea Surface Temperature Prediction. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Ou, M.; Xu, S.; Luo, B.; Zhou, H.; Zhang, M.; Xu, P.; Zhu, H. 3-D Ocean Temperature Prediction Via Graph Neural Network with Optimized Attention Mechanisms. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Bai, L.; Qiu, L.; Zheng, J.; Zhang, Y.; Chen, X.; Sun, Y. A Parallel Convolution Attention and Temporal Sequence Attention Neural Network Approach for Ocean Current Prediction Incorporating Spatial–Temporal Coupling Mechanism. Expert Syst. Appl. 2025, 281, 127681. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Jin, F.; Pan, J. A Physics Informed Convolution Neural Network for Spatiotemporal Temperature Analysis of Concrete Dams. Eng. Appl. Artif. Intell. 2025, 150, 110624. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Ma, W.; Xu, X.; Wang, H. Pid4late: A Physics-Informed Deep Learning Model for Lake Multi-Depth Temperature Prediction. Earth Sci. Inf. 2024, 17, 3779–3795. [Google Scholar] [CrossRef]
- Xiao, Z.; Fang, H.; Wang, X. Distributed Nonlinear Polynomial Graph Filter and Its Output Graph Spectrum: Filter Analysis and Design. IEEE Trans. Signal Process. 2021, 69, 1725–1739. [Google Scholar] [CrossRef]
- National Climatic Data Center. 2018. Available online: ftp://ftp.ncdc.noaa.gov/pub/data/gsod (accessed on 31 December 2018).
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Feng, X.; Chen, Y.; Li, H.; Ma, T.; Ren, Y. Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction. Sustainability 2023, 15, 7696. [Google Scholar] [CrossRef]
- Zheng, Y.; Koh, H.; Jin, M.; Chi, L.; Phan, K.; Pan, S. Correlation-Aware Spatial–Temporal Graph Learning for Multivariate Time-Series Anomaly Detection. IEEE Trans. Neural Netw. 2023, 35, 11802–11816. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Slide Window Length M | 5 |
Number of Cities N | 100 |
Embedding Size d | 128 |
Feature Length L | 256 |
Feature Length R | 128 |
Learning Rate | 4 × |
Number of Epochs | 400 |
Weight-Decay Parameters | 0.0001 |
Batch Size | 32 |
200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Su, B.; Chen, S.; Fang, H. Physics-Informed Directed Graph Network-Based Temperature Forecasting Model. Sensors 2025, 25, 5295. https://doi.org/10.3390/s25175295
Cai J, Su B, Chen S, Fang H. Physics-Informed Directed Graph Network-Based Temperature Forecasting Model. Sensors. 2025; 25(17):5295. https://doi.org/10.3390/s25175295
Chicago/Turabian StyleCai, Jinjing, Binting Su, Shuping Chen, and He Fang. 2025. "Physics-Informed Directed Graph Network-Based Temperature Forecasting Model" Sensors 25, no. 17: 5295. https://doi.org/10.3390/s25175295
APA StyleCai, J., Su, B., Chen, S., & Fang, H. (2025). Physics-Informed Directed Graph Network-Based Temperature Forecasting Model. Sensors, 25(17), 5295. https://doi.org/10.3390/s25175295