A Comparative Assessment of Sentinel-2 and UAV-Based Imagery for Soil Organic Carbon Estimations Using Machine Learning Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Soil Sampling and Laboratory Analysis
2.2. Laboratory Analysis
2.3. UAS Multispectral Imagery Data Acquisition
2.4. Sentinel-2 Imagery
2.5. Building a Model to Predict Soil Organic Carbon at the Regional Scale
2.6. Multiple Linear Regression
- -
- SOC represents the soil organic carbon content.
- -
- α is the intercept.
- -
- X = (X1,…,Xn) denotes the vector of remote sensing-derived predictors.
- -
- β = (β1,…,βn) are the model coefficients.
- -
- ε is the error term.
2.7. Random Forest
2.8. Support Vector Machine
2.9. Artificial Neural Network (ANN)
2.10. Performance Evaluation of SOC Prediction Models
3. Results and Discussion
3.1. Summary Statistic
3.2. Multiple Linear Regression
3.3. Support Vector Regression
3.4. Random Forest
3.5. Artificial Neural Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAS | Unmanned Aerial System |
SOC | Soil Organic Carbon |
ANN | Artificial Neural Networks |
MRL | Multiple Linear Regression |
SVR | Support Vector Regression |
RF | Random Forest |
RMSE | Root Mean Square Error |
RMSE | Root-mean-square error |
ML | Machine Learning |
SVM | Support Vector Machine |
XGBoost | Extreme Gradient Boosting |
DL | Deep Learning |
References
- Luo, Z.; Wang, E.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2010, 155, 211–223. [Google Scholar] [CrossRef]
- Wang, J.; Bowden, R.D.; Lajtha, K.; Washko, S.E.; Wurzbacher, S.J.; Simpson, M.J. Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry 2019, 142, 299–313. [Google Scholar] [CrossRef]
- Kim, J.H.; Jobbágy, E.G.; Richter, D.D.; Trumbore, S.E.; Jackson, R.B. Agricultural acceleration of soil carbonate weathering. Glob. Change Biol. 2020, 26, 5988–6002. [Google Scholar] [CrossRef]
- Johns, C.W.; Lee, A.B.; Springer, T.I.; Rosskopf, E.N.; Hong, J.C.; Turechek, W.; Kokalis-Burelle, N.; Finley, N.L. Using NMR-based metabolomics to monitor the biochemical composition of agricultural soils: A pilot study. Eur. J. Soil Biol. 2017, 83, 98–105. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Palm, C.; Parton, W.; Elliott, E.; Frey, S. Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soils. Soil Biol. Biochem. 1994, 26, 935–944. [Google Scholar] [CrossRef]
- Cremers, D.A.; Ebinger, M.H.; Breshears, D.D.; Unkefer, P.J.; Kammerdiener, S.A.; Ferris, M.J.; Catlett, K.M.; Brown, J.R. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). J. Environ. Qual. 2001, 30, 2202–2206. [Google Scholar] [CrossRef] [PubMed]
- Croft, H.; Kuhn, N.J.; Anderson, K. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena 2012, 94, 64–74. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K.; Ahmad, R.; Abd-Elsalam, K.A. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. Agrochemicals 2023, 2, 220–256. [Google Scholar] [CrossRef]
- Gómez, C. Last Sundays at Bootleggers. N. Engl. Rev. 2019, 40, 120–121. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Kumar, R.; Pareek, N.K.; Kumar, U.; Javed, T.; Al-Huqail, A.A.; Rathore, V.S.; Nangia, V.; Choudhary, A.; Nanda, G.; Kalaji, H.M.; et al. Coupling effects of nitrogen and irrigation levels on growth attributes, nitrogen use efficiency, and economics of cotton. Front. Plant Sci. 2022, 13, 890181. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Zhu, X. Soil organic carbon estimation using remote sensing data-driven machine learning. PeerJ 2024, 12, e17836. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.F.; Marques, A.V.; da Silva, R.M. Soil organic carbon assessment using remote-sensing data and machine learning: A systematic review. Remote Sens. 2025, 17, 882. [Google Scholar] [CrossRef]
- Xiao, X.; He, Q.; Ma, S.; Liu, J.; Sun, W.; Lin, Y.; Yi, R. Environmental variables improve the accuracy of remote sensing estimation of soil organic carbon content. Sci. Rep. 2024, 14, 18964. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Jague, E.; Heckrath, G.; Macdonald, A.; van Wesemael, B.; Van Oost, K. UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma 2016, 275, 55–66. [Google Scholar] [CrossRef]
- El-Jamaoui, I.; Delgado-Iniesta, M.J.; Martínez Sánchez, M.J.; Pérez Sirvent, C.; Martínez López, S. Assessing Soil Organic Carbon in Semi-Arid Agricultural Soils Using UAVs and Machine Learning: A Pathway to Sustainable Water and Soil Resource Management. Sustainability 2025, 17, 3440. [Google Scholar] [CrossRef]
- Beltrán-Marcos, D.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Marcos, E.; Calvo, L. Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire. Geoderma 2023, 430, 116290. [Google Scholar] [CrossRef]
- Zeng, Y.; Verhoef, A.; Vereecken, H.; Ben-Dor, E.; Veldkamp, T.; Shaw, L.; Van Der Ploeg, M.; Wang, Y.; Su, Z. Monitoring and modeling the soil-plant system toward understanding soil health. Rev. Geophys. 2025, 63, e2024RG000836. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J. Deep learning-based national scale soil organic carbon mapping with Sentinel-3 data. Geoderma 2023, 411, 115695. [Google Scholar] [CrossRef]
- El Jamaoui, I.; Martínez Sánchez, M.J.; Pérez Sirvent, C.; Ali Mana, A.; Martínez López, S. Machine learning-driven modeling for soil organic carbon estimation from multispectral drone imaging: A case study in Corvera, Murcia (Spain). Model. Earth Syst. Environ. 2024, 10, 3473–3494. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Meersmans, J.; Van Wesemael, B.; Van Molle, M. Determining soil organic carbon for agricultural soils: A comparison between the Walkley Black and the dry combustion methods (north Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Pizaña, J.M.G.; Hernández, J.M.N.; Romero, N.C. Remote sensing-based biomass estimation. Environ. Appl. Remote Sens. 2016, 10, 9952. [Google Scholar]
- Ellili, Y.; Walter, C.; Michot, D.; Pichelin, P.; Lemercier, B. Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma 2019, 351, 1–8. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e00198. [Google Scholar] [CrossRef]
- Grunwald, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 2009, 152, 195–207. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Zhang, L.; Pu, Y.; Yang, C.; Wu, Q.; Cai, Y.; Shen, F.; Zhou, C. A review on digital mapping of soil carbon in cropland: Progress, challenge, and prospect. Environ. Res. Lett. 2022, 17, 123004. [Google Scholar] [CrossRef]
- Yang, C. High resolution satellite imaging sensors for precision agriculture. Front. Agric. Sci. Eng. 2018, 5, 393–405. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2, pp. 1–758. [Google Scholar]
- Cressie, N. Statistics for Spatial Data; John Wiley Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, L.; Li, Y. Prediction of soil organic carbon content using Sentinel-1/2 and machine learning algorithms in swamp wetlands in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5219–5230. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators–Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Xu, M.; Chu, X.; Fu, Y.; Wang, C.; Wu, S. Improving the accuracy of soil organic carbon content prediction based on visible and near-infrared spectroscopy and machine learning. Environ. Earth Sci. 2021, 80, 326. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-an S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef]
- Sinha, S.K.; Wang, M.C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng. 2008, 26, 47–64. [Google Scholar] [CrossRef]
- Elakiya, N.; Keerthana, G. Application of artificial neural networks in soil science research. Arch. Curr. Res. Int. 2024, 24, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Zhao, Y.; Song, X.; Long, H.; Yang, G. Estimation of potato above-ground biomass using UAV-based hyperspectral images and machine-learning regression. Remote Sens. 2022, 14, 5449. [Google Scholar] [CrossRef]
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M. Comparison of artificial neural networks and partial least squares regression models for on-line visible and near infrared spectroscopy measurement of soil organic carbon. Soil Tillage Res. 2015, 146, 10–17. [Google Scholar] [CrossRef]
- Crucil, G.; Castaldi, F.; Aldana-Jague, E.; Van Wesemael, B.; Macdonald, A.; Van Oost, K. Assessing the Performance of UAS-Compatible Multispectral and Hyperspectral Sensors for Soil Organic Carbon Prediction. Sustainability 2019, 11, 1889. [Google Scholar] [CrossRef]
- England, J.R.; Viscarra Rossel, R.A. Proximal sensing for soil carbon accounting. Soil 2018, 4, 101–122. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Matinfar, H.R.; Maghsodi, Z.; Mousavi, S.R.; Rahmani, A. Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena 2021, 202, 105258. [Google Scholar] [CrossRef]
- Biney, J.; Saberioon, M.; Borůvka, L.; Houška, J.; Vašát, R.; Chapman Agyeman, P.; Coblinski, J.A.; Klement, A. Exploring the suitability of UAS-based multispectral images for estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery. Remote Sens. 2021, 13, 308. [Google Scholar] [CrossRef]
- Salgado, L.; González, L.M.; Gallego, J.L.R.; López-Sánchez, C.A.; Colina, A.; Forján, R. Mapping soil organic carbon in degraded ecosystems through upscaled multispectral UAV–satellite imagery. Land 2025, 14, 377. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data. Sci. Total Environ. 2020, 755, 142661. [Google Scholar] [CrossRef]
- Yang, J.; Fan, J.; Lan, Z.; Mu, X.; Wu, Y.; Xin, Z.; Miping, P.; Zhao, G. Improved surface soil organic carbon mapping of SoilGrids250m using Sentinel-2 spectral images in the Qinghai-Tibetan Plateau. Remote Sens. 2022, 15, 114. [Google Scholar] [CrossRef]
- Abbaszad, P.; Asadzadeh, F.; Rezapour, S.; Aqdam, K.K.; Shabani, F. Evaluation of Landsat 8 and Sentinel-2 vegetation indices to predict soil organic carbon using machine learning models. Model. Earth Syst. Environ. 2023, 10, 2581–2592. [Google Scholar] [CrossRef]
- Mango, L.; Narissara, N.; Jaturong, S.A. Estimating soil organic carbon using Sentinel-2 data under zero tillage agriculture: A machine learning approach. Earth Sci. Inform. 2024, 17, 5471–5486. [Google Scholar] [CrossRef]
- Tan, Q.; Geng, J.; Fang, H.; Li, Y.; Guo, Y. Exploring the impacts of data source, model types and spatial scales on soil organic carbon prediction. Remote Sens. 2022, 14, 5151. [Google Scholar] [CrossRef]
- Xu, J.; Du, C.; Ma, F.; Qiu, Z.; Zhou, J. A framework for high-resolution mapping of soil organic matter (SOM) using FTIR-ATR, Sentinel-2, and DEM derivatives. Remote Sens. 2023, 15, 1072. [Google Scholar] [CrossRef]
- Xie, B.; Ding, J.; Ge, X.; Li, X.; Han, L.; Wang, Z. Estimation of soil organic carbon content in the Ebinur Lake wetland using multisource remote sensing and ensemble learning. Sensors 2022, 22, 2685. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham, T.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intellience approach for SOC prediction using multispectral and SAR data fusion. Sci. Total. Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
Band | Resolution | Central Wavelength | Description |
---|---|---|---|
B1 | 60 m | 443 nm | Ultra Blue (Coastal and Aerosol) |
B2 | 10 m | 490 nm | Blue |
B3 | 10 m | 560 nm | Green |
B4 | 10 m | 665 nm | Red |
B5 | 20 m | 705 nm | Visible and Near Infrared (VNIR) |
B6 | 20 m | 740 nm | Visible and Near Infrared (VNIR) |
B7 | 20 m | 783 nm | Visible and Near Infrared (VNIR) |
B8 | 10 m | 842 nm | Visible and Near Infrared (VNIR) |
B8a | 20 m | 865 nm | Visible and Near Infrared (VNIR) |
B9 | 60 m | 940 nm | Short Wave Infrared (SWIR) |
B10 | 60 m | 1375 nm | Short Wave Infrared (SWIR) |
B11 | 20 m | 1610 nm | Short Wave Infrared (SWIR) |
B12 | 20 m | 2190 nm | Short Wave Infrared (SWIR) |
Index | Definition Based on Drone Imagery | Definition Based on Sentinel-2 | Reference |
---|---|---|---|
NDVI | [25] | ||
EVI | [26] | ||
[27] | |||
DVI | NIR–Red | B8–B4 | [28] |
OSAVI | [29] | ||
BI | [30] |
SOC | Blue | Green | Red | Nir | NDVI | EVI | OSAVI | SAVI | DVI | BI | |
---|---|---|---|---|---|---|---|---|---|---|---|
count | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
mean | 40.83 | 0.26 | 0.32 | 0.40 | 0.50 | 0.05 | 0.11 | 0.08 | 0.232 | 0.09 | 0.47 |
std | 14.84 | 0.015 | 0.020 | 0.02 | 0.018 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.03 |
min | 11.88 | 0.2216 | 0.2687 | 0.33 | 0.4512 | 0.006 | 0.08 | 0.06 | 0.18 | 0.0725 | 0.38 |
0.25 | 29.001 | 0.25 | 0.3182 | 0.391 | 0.4898 | 0.04 | 0.1 | 0.07 | 0.21 | 0.08 | 0.45 |
0.5 | 39.09 | 0.2613 | 0.3292 | 0.41 | 0.50 | 0.052 | 0.11 | 0.083 | 0.23 | 0.09 | 0.47 |
0.75 | 48.69 | 0.2707 | 0.3451 | 0.43 | 0.5117 | 0.05 | 0.12 | 0.09 | 0.24 | 0.09 | 0.49 |
max | 74.62 | 0.3178 | 0.4082 | 0.4841 | 0.558 | 0.09 | 0.18 | 0.13 | 0.31 | 0.134 | 0.56 |
Scaler | Accuracy on Tested Data | Accuracy on Training Data | ||||||
---|---|---|---|---|---|---|---|---|
UAV | Sentinel-2 | UAV | Sentinel-2 | |||||
R2 | MSE | R2 | MSE | R2 | MSE | R2 | MSE | |
Standard | 0.28 | 55.27 | −0.39 | 268.18 | 0.46 | 26.72 | 0.020 | 207.007 |
Min–Max | 0.07 | 58.61 | −0.40 | 269.26 | 0.45 | 27.55 | 0.012 | 208.77 |
Robust | 0.20 | 50.31 | −0.39 | 266.30 | 0.47 | 26.48 | 0.021 | 206.88 |
Training | Selection | Testing | ||||
---|---|---|---|---|---|---|
UAV | Sentinel-2 | UAV | Sentinel-2 | UAV | Sentinel-2 | |
SSE | 203.707 | 5518.195 | 117.128 | 4321.564 | 116.562 | 4400.120 |
MSE | 0.038 | 14.8068 | 0.066 | 11.836 | 0.066 | 12.230 |
RMSE | 0.196 | 19.8534 | 0.258 | 19.161 | 0.257 | 19.244 |
NSE | 0.343 | −1.0576 | 0.337 | −0.942 | 0.32 | −0.910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Jamaoui, I.; José Martínez Sánchez, M.; Pérez Sirvent, C.; Martínez López, S. A Comparative Assessment of Sentinel-2 and UAV-Based Imagery for Soil Organic Carbon Estimations Using Machine Learning Models. Sensors 2025, 25, 5281. https://doi.org/10.3390/s25175281
El-Jamaoui I, José Martínez Sánchez M, Pérez Sirvent C, Martínez López S. A Comparative Assessment of Sentinel-2 and UAV-Based Imagery for Soil Organic Carbon Estimations Using Machine Learning Models. Sensors. 2025; 25(17):5281. https://doi.org/10.3390/s25175281
Chicago/Turabian StyleEl-Jamaoui, Imad, Maria José Martínez Sánchez, Carmen Pérez Sirvent, and Salvadora Martínez López. 2025. "A Comparative Assessment of Sentinel-2 and UAV-Based Imagery for Soil Organic Carbon Estimations Using Machine Learning Models" Sensors 25, no. 17: 5281. https://doi.org/10.3390/s25175281
APA StyleEl-Jamaoui, I., José Martínez Sánchez, M., Pérez Sirvent, C., & Martínez López, S. (2025). A Comparative Assessment of Sentinel-2 and UAV-Based Imagery for Soil Organic Carbon Estimations Using Machine Learning Models. Sensors, 25(17), 5281. https://doi.org/10.3390/s25175281