Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation
Abstract
1. Introduction
2. Materials and Methods
- Initial assessment of prosthetic function;
- sEMG training of stump muscles;
- Reassessment of prosthetic function.
2.1. Initial Assessment of Prostheses Function
2.1.1. Subjects
2.1.2. Experimental Setup
2.1.3. Experimental Procedure
2.1.4. Measurement Analysis
2.2. sEMG Training of Stump Muscles
2.2.1. Subjects
2.2.2. Experimental Devices
2.2.3. Experimental Procedure
2.2.4. Measurement Analysis
2.3. Reassessment of Prosthetic Function
3. Results
3.1. Assessment of Prosthetic Function
3.1.1. Objective Indicators
- Traditional clinical assessment
- Task Measurement Indicators
- Assessment of Motion Smoothness
3.1.2. Subjective Indicators
3.1.3. Association Analysis
3.2. Stump Muscle sEMG Training
3.2.1. Objective Indicators
- Mean value of RMS of sEMG signal
- Game score and number of gold coins
3.2.2. Subjective Indicators
- IMI Scale
3.3. Reassessment of Prosthetic Function
3.3.1. Placing Task and Submitting Task
3.3.2. ADL and BBT
4. Discussion
4.1. Assessment of Prosthetic Function
4.2. Stump Muscle sEMG Signal Training
4.3. Reassessment of Prosthetic Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leading Group of the Second China National Sample Survey on Disability, National Bureau of Statistics of the People’s Republic of China. National Second Sample Survey on Disability in China. Chin. J. Rehabil. Theory Pract. 2006, 12, 1013. [Google Scholar]
- Román-Casares, A.M.; García-Gómez, O.; Guerado, E. Prosthetic Limb Design and Function: Latest Innovations and Functional Results. Curr. Trauma Rep. 2018, 4, 256–262. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, W. Development of prostheses in China since the founding of the People’s Republic. Chin. J. Orthop. 2009, 17, 1325–1328. [Google Scholar]
- Peerdeman, B.M.; Boere, D.M.; Witteveen, H.M.; in‘t Veld, R.H.P.; Hermens, H.P.; Stramigioli, S.P.; Rietman, H.M.D.P.; Veltink, P.P.; Misra, S.P. Myoelectric forearm prostheses: State of the art from a user-centered perspective. J. Rehabil. Res. Dev. 2011, 48, 719–737. [Google Scholar] [CrossRef]
- Parr, J.V.V.; Wright, D.J.; Uiga, L.; Marshall, B.; Mohamed, M.O.; Wood, G. A scoping review of the application of motor learning principles to optimize myoelectric prosthetic hand control. Prosthet. Orthot. Int. 2022, 46, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Phinyomark, A.; Scheme, E. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity. Sensors 2020, 20, 1613. [Google Scholar] [CrossRef]
- Kristoffersen, M.B.; Franzke, A.W.; van der Sluis, C.K.; Murgia, A.; Bongers, R.M. The Effect of Feedback During Training Sessions on Learning Pattern-Recognition-Based Prosthesis Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2087–2096. [Google Scholar] [CrossRef]
- Resnik, L.J.; Borgia, M.L.; Clark, M.A.; Heinemann, A.W.; Ni, P. Measuring Satisfaction With Upper Limb Prostheses: Orthotics and Prosthetics User Survey Revision That Includes Issues of Concern to Women. Arch. Phys. Med. Rehabil. 2022, 103, 2316–2324. [Google Scholar] [CrossRef]
- Davidson, J. A comparison of upper limb amputees and patients with upper limb injuries using the Disability of the Arm, Shoulder and Hand (DASH). Disabil. Rehabil. 2004, 26, 917–923. [Google Scholar] [CrossRef]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an upper extremity outcome measure: The DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef]
- Franzke, A.W.; Kristoffersen, M.B.; Farina, D.; van der Sluis, C.K.; Bongers, R.M.; Murgia, A. Testing the Use of Advanced Upper Limb Prostheses: Towards Quantifying the Movement Quality with Inertial-Magnetic Measurement Units. Prosthesis 2023, 5, 264–281. [Google Scholar] [CrossRef]
- Galviati, R.; Boccardo, N.; Canepa, M.; Di Domenico, D.; Marinelli, A.; Frigo, C.A.; Laffranchi, M.; de Michieli, L. IMU Sensors Measurements towards the Development of Novel Prosthetic Arm Control Strategies. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar]
- Nam, H.S.; Lee, W.H.; Seo, H.G.; Kim, Y.J.; Bang, M.S.; Kim, S. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living. Sensors 2019, 19, 1782. [Google Scholar] [CrossRef] [PubMed]
- Putrino, D.; Wong, Y.T.; Weiss, A.; Pesaran, B. A training platform for many-dimensional prosthetic devices using a virtual reality environment. J. Neurosci. Methods 2015, 244, 68–77. [Google Scholar] [CrossRef]
- Wang, S.L.; Civillico, G.; Niswander, W.; Kontson, K.L. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users. Sensors 2022, 22, 2953. [Google Scholar] [CrossRef]
- Markovic, M.; Schweisfurth, M.A.; Engels, L.F.; Bentz, T.; Wüstefeld, D.; Farina, D.; Dosen, S. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J. Neuroeng. Rehabil. 2018, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, S.B.; Zhao, K.D.; Theuer, A.; Catalano, M.G.; Bianchi, M.; Breighner, R.; Bhaskaran, D.; Lennon, R.; Grioli, G.; Santello, M.; et al. The SoftHand Pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis. PLoS ONE 2018, 13, e0205653. [Google Scholar] [CrossRef]
- Belter, J.T.; Leddy, M.T.; Gemmell, K.D.; Dollar, A.M. Comparative Clinical Evaluation of the Yale Multigrasp Hand. In Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 528–535. [Google Scholar]
- Liang, K.-J.; Chen, H.-L.; Shieh, J.-Y.; Wang, T.-N. Measurement properties of the box and block test in children with unilateral cerebral palsy. Sci. Rep. 2021, 11, 20955. [Google Scholar] [CrossRef]
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef]
- Armiger, R.S.; Tenore, F.V.; Bishop, W.E.; Beaty, J.D.; Bridges, M.M.; Burck, J.M.; Vogelstein, R.J.; Harshbarger, S.D. A Real-Time Virtual Integration Environment for Neuroprosthetics and Rehabilitation. Johns Hopkins APL Tech. Dig. 2011, 30, 198–206. [Google Scholar]
- Todorov, E.; Shadmehr, R.; Bizzi, E. Augmented Feedback Presented in a Virtual Environment Accelerates Learning of a Difficult Motor Task. J. Mot. Behav. 1997, 29, 147–158. [Google Scholar] [CrossRef]
- Everard, G.; Otmane-Tolba, Y.; Rosselli, Z.; Pellissier, T.; Ajana, K.; Dehem, S.; Auvinet, E.; Edwards, M.G.; Lebleu, J.; Lejeune, T. Concurrent validity of an immersive virtual reality version of the Box and Block Test to assess manual dexterity among patients with stroke. J. Neuroeng. Rehabil. 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Cellupica, A.; Cirelli, M.; Saggio, G.; Gruppioni, E.; Valentini, P.P. An Interactive Digital-Twin Model for Virtual Reality Environments to Train in the Use of a Sensorized Upper-Limb Prosthesis. Algorithms 2024, 17, 35. [Google Scholar] [CrossRef]
- Li, J.; Song, A.; Cao, S. Upper limb rehabilitation system with vibration tactile feedback. Meas. Control. Technol. 2023, 42, 42–47. [Google Scholar]
- Pouliot-Laforte, A.; Dubé, E.; Kairy, D.; Levac, D.E. What is the current state of precision rehabilitation? Protocol for a scoping study with a consultation phase. BMJ Open 2025, 15, e094119. [Google Scholar] [CrossRef]
- Cotton, R.J.; Segal Rick, R.L.; Seamon, B.A.; Sahu, A.; McLeod, M.M.; Davis, R.D.; Ramey, S.L.; French, M.A.; Roemmich, R.T.; Daley, K.; et al. Precision Rehabilitation: Optimizing Function, Adding Value to Health Care. J. Neuroeng. Rehabil. 2022, 103, 1883–1884. [Google Scholar] [CrossRef]
- Xue, J. Research on Virtual Reality Rehabilitation Methods for Patients with Forearm Amputation. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Smail, L.C.; Neal, C.; Wilkins, C.; Packham, T.L. Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review. Disabil. Rehabil. Assist. Technol. 2021, 16, 821–830. [Google Scholar] [CrossRef]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. NPJ Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef]
- Nowak, M.; Bongers, R.M.; van der Sluis, C.K.; Albu-Schäffer, A.; Castellini, C. Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: A single-case experimental design. J. Neuroeng. Rehabil. 2023, 20, 39. [Google Scholar] [CrossRef]
- Hu, H.; Yang, H.; Min, L.; Song, H.; Shu, T.; Hou, W.; Wang, X. A Preliminary Study of Task Assessment Methods for Upper Limb Myoelectric Prostheses. Procedia Comput. Sci. 2023, 226, 50–56. [Google Scholar] [CrossRef]
- GB/T 41841-2022; “Functional Evaluation of Forearm Prostheses” State Administration for Market Regulation. Standardization Administration of China: Beijing, China, 2022.
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef]
- Prahm, C.; Kayali, F.; Sturma, A.; Aszmann, O. PlayBionic: Game-Based Interventions to Encourage Patient Engagement and Performance in Prosthetic Motor Rehabilitation. PM&R 2018, 10, 1252–1260. [Google Scholar]
- Sturma, A.; Roche, A.D.; Göbel, P.; Herceg, M.; Ge, N.; Fialka-Moser, V.; Aszmann, O. A surface EMG test tool to measure proportional prosthetic control. Biomed. Tech. 2015, 60, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Kearns, N.T.; Peterson, J.K.; Smurr Walters, L.; Jackson, W.T.; Miguelez, J.M.; Ryan, T. Development and Psychometric Validation of Capacity Assessment of Prosthetic Performance for the Upper Limb (CAPPFUL). Arch. Phys. Med. Rehabil. 2018, 99, 1789–1797. [Google Scholar] [CrossRef]
- Metzger, A.J.; Dromerick, A.W.; Holley, R.J.; Lum, P.S. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks. Arch. Phys. Med. Rehabil. 2012, 93, 2029–2034. [Google Scholar] [CrossRef]
- Russell Esposito, E.; Miller, R.H. Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss. PLoS ONE 2018, 13, e0191310. [Google Scholar] [CrossRef]
- Lohse, K.; Shirzad, N.; Verster, A.; Hodges, N.; Van der Loos, H.F.M. Video Games and Rehabilitation: Using Design Principles to Enhance Engagement in Physical Therapy. J. Neurol. Phys. Ther. 2013, 37, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Prahm, C.; Kayali, F.; Sturma, A.; Aszmann, O.C. Recommendations for Games to Increase Patient Motivation During Upper Limb Amputee Rehabilitation. In Converging Clinical and Engineering Research on Neurorehabilitation II; Springer: Cham, Switzerland, 2017. [Google Scholar]
Subject | Age | Gender | Amputation Status | Causes of Amputation | Prosthetic Type |
---|---|---|---|---|---|
A1 | 26 | female | left arm | inborn | Danyang |
A2 | 57 | male | right arm | contraindication 27 years ago | Intelligent |
A3 | 39 | female | left arm | contraindication 32 years ago | Intelligent |
A4 | 61 | male | left arm | contraindication 43 years ago | Danyang |
A5 | 51 | male | left arm | contraindication 26 years ago | Intelligent |
A6 | 33 | male | left arm | contraindication 13 years ago | Intelligent |
Prosthesis Type | Hand Side | Degrees of Freedom | Control Method | Power Supply |
---|---|---|---|---|
Danyang | Left | 2 (Hand open/close, wrist flexion/extension) | Dual-channel sequential control | 8V lithium battery |
Intelligent | Left/right | Multiple (multi-DOF hand, wrist flexion/extension, rotation) | 16-channel pattern recognition control | 8V lithium battery |
Subject | Prosthetic Limb Size (Within 1 cm Shorter Than the Healthy Subject) | Prosthetic Limb Weight (≤0.5 kg) | Stability of the Prosthesis |
---|---|---|---|
A1 | √ | × | √ |
A2 | √ | × | √ |
A3 | √ | × | √ |
A4 | √ | × | √ |
A5 | √ | × | √ |
A6 | √ | × | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Luo, Y.; Min, L.; Li, L.; Wang, X. Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation. Sensors 2025, 25, 5277. https://doi.org/10.3390/s25175277
Hu H, Luo Y, Min L, Li L, Wang X. Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation. Sensors. 2025; 25(17):5277. https://doi.org/10.3390/s25175277
Chicago/Turabian StyleHu, Huimin, Yi Luo, Ling Min, Lei Li, and Xing Wang. 2025. "Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation" Sensors 25, no. 17: 5277. https://doi.org/10.3390/s25175277
APA StyleHu, H., Luo, Y., Min, L., Li, L., & Wang, X. (2025). Facilitated Effects of Closed-Loop Assessment and Training on Trans-Radial Prosthesis User Rehabilitation. Sensors, 25(17), 5277. https://doi.org/10.3390/s25175277