The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies
Abstract
1. Ecocebo: The Physical Component of Placebo Response
1.1. The Spatial Context Component of Placebo
1.2. The Interaction Between Environmental Space and Response to Medications
1.3. Open Questions Regarding the ‘What’ and ‘How’ of Investigating Ecocebo
2. The Psychobiological Effects Induced by Environmental Features
Emotional and Neuropsychological Impact of Interior Design Elements
3. Which Experimental Strategy and Technological Approaches Should Be Used to Study Ecocebo?
3.1. Advancing Experimental and Clinical Neuroscience Through Virtual Reality Technologies
3.2. Sense of Presence and Ecological Validity in VR: Toward Better Standards for Experimental and Therapeutic Research
4. Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EBD | evidence-based design |
EE | environmental enrichment |
EEG | electroencephalogram |
HRV | heart rate variability |
NIBS | non-invasive brain stimulations |
SC | skin conductance |
VR | virtual reality |
References
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Llorens-Gámez, M.; Higuera-Trujillo, J.L.; Omarrementeria, C.S.; Llinares, C. The impact of the design of learning spaces on attention and memory from a neuroarchitectural approach: A systematic review. Front. Archit. Res. 2022, 11, 542–560. [Google Scholar] [CrossRef]
- Higuera-Trujillo, J.L.; Llinares, C.; Macagno, E. The cognitive-emotional design and study of architectural space: A scoping review of neuroarchitecture and its precursor approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Kenett, Y.N.; Nadal, M.; Hartung, F.; Hayn-Leichsenring, G.; Navarrete, G.; González-Mora, J.L.; Chatterjee, A. Psychological and neural responses to architectural interiors. Cortex 2020, 126, 217–241. [Google Scholar] [CrossRef]
- Chiamulera, C.; Benvegnù, G.; Piva, A.; Paolone, G. Ecocebo: How the interaction between environment and drug effects may improve pharmacotherapy outcomes. Neurosci. Biobehav. Rev. 2024, 161, 105648. [Google Scholar] [CrossRef]
- Palese, A.; Rossettini, G.; Colloca, L.; Testa, M. The impact of contextual factors on nursing outcomes and the role of placebo/nocebo effects: A discussion paper. Pain Rep. 2019, 4, e716. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Frisaldi, E.; Shaibani, A. Thirty Years of Neuroscientific Investigation of Placebo and Nocebo: The Interesting, the Good, and the Bad. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 323–340. [Google Scholar] [CrossRef]
- Wager, T.D.; Atlas, L.Y. The neuroscience of placebo effects: Connecting context, learning and health. Nat. Rev. Neurosci. 2015, 16, 403–418. [Google Scholar] [CrossRef]
- Carhart-Harris, R.L.; Roseman, L.; Haijen, E.; Erritzoe, D.; Watts, R.; Branchi, I.; Kaelen, M. Psychedelics and the essential importance of context. J. Psychopharmacol. 2018, 32, 725–731. [Google Scholar] [CrossRef]
- Walch, J.M.; Rabin, B.S.; Day, R.; Williams, J.; Choi, K.; Kang, J. The effect of sunlight on postoperative analgesic medication use: A prospective study of patients undergoing spinal surgery. Psychosom. Med. 2005, 67, 156–163. [Google Scholar] [CrossRef]
- Donovan, G.H.; Gatziolis, D.; Douwes, J. Relationship between exposure to the natural environment and recovery from hip or knee arthroplasty: A New Zealand retrospective cohort study. BMJ Open 2019, 9, e029522. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S.; Zimring, C.; Zhu, X.; DuBose, J.; Seo, H.B.; Choi, Y.S.; Quan, X.; Joseph, A. A review of the research literature on evidence-based healthcare design. HERD 2008, 1, 61–125. [Google Scholar] [CrossRef] [PubMed]
- Tullett, A.M.; Kay, A.C.; Inzlicht, M. Randomness increases self-reported anxiety and neurophysiological correlates of performance monitoring. Soc. Cogn. Affect. Neurosci. 2014, 10, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through architectural spaces: The impact of interior forms on human brain dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. USA 2013, 110, 10446–10453. [Google Scholar] [CrossRef]
- Bar, M.; Neta, M. Visual elements of subjective preference modulate amygdala activation. Neuropsychologia 2007, 45, 2191–2200. [Google Scholar] [CrossRef]
- Joseph, A.; Choi, Y.S.; Quan, X. Impact of the Physical Environment of Residential Health, Care, and Support Facilities (RHCSF) on Staff and Residents: A Systematic Review of the Literature. Environ. Behav. 2016, 48, 1203–1241. [Google Scholar] [CrossRef]
- Jelić, A.; Tieri, G.; De Matteis, F.; Babiloni, F.; Vecchiato, G. The enactive approach to architectural experience: A neurophysiological perspective on embodiment, motivation, and affordances. Front. Psychol. 2016, 7, 481. [Google Scholar] [CrossRef]
- Rad, P.N.; Behzadi, F.; Yazdanfar, S.A.; Ghamari, H.; Zabeh, E.; Lashgari, R. Exploring Methodological Approaches of Experimental Studies in the Field of Neuroarchitecture: A Systematic Review. HERD 2023, 16, 284–309. [Google Scholar] [CrossRef]
- Lesley, M.J.; Harrison, I.R. The effects of built environment design on opportunities for wellbeing in care homes. Archnet-IJAR Int. J. Archit. Res. 2017, 11, 138–156. [Google Scholar] [CrossRef]
- Riva, G.; Wiederhold, B.K.; Mantovani, F. Neuroscience of Virtual Reality: From Virtual Exposure to Embodied Medicine. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 82–96. [Google Scholar] [CrossRef]
- Presti, P.; Ruzzon, D.; Avanzini, P.; Caruana, F.; Rizzolatti, G.; Vecchiato, G. Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments. Sci. Rep. 2022, 12, 17689. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, E.; Zucchella, C.; Bottiroli, S.; Federico, A.; Giugno, R.; Sandrini, G.; Chiamulera, C.; Tamburin, S. Telemedicine and Virtual Reality for Cognitive Rehabilitation: A Roadmap for the COVID-19 Pandemic. Front. Neurol. 2020, 11, 926. [Google Scholar] [CrossRef] [PubMed]
- Parsons, T.D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef]
- Segawa, T.; Baudry, T.; Bourla, A.; Blanc, J.V.; Peretti, C.S.; Mouchabac, S.; Ferreri, F. Virtual Reality (VR) in Assessment and Treatment of Addictive Disorders: A Systematic Review. Front. Neurosci. 2020, 13, 1409. [Google Scholar] [CrossRef] [PubMed]
- Zeka, F.; Clemmensen, L.; Valmaggia, L.; Veling, W.; Hjorthøj, C.; Glenthøj, L.B. The Effectiveness of Immersive Virtual Reality-Based Treatment for Mental Disorders: A Systematic Review With Meta-Analysis. Acta Psychiatr. Scand. 2024, 149, 210–230. [Google Scholar] [CrossRef]
- Chiamulera, C.; Ferrandi, E.; Benvegnù, G.; Ferraro, S.; Tommasi, F.; Maris, B.; Zandonai, T.; Bosi, S. Virtual Reality for Neuroarchitecture: Cue Reactivity in Built Spaces. Front. Psychol. 2017, 8, 185. [Google Scholar] [CrossRef]
- Zandonai, T.; Benvegnù, G.; Tommasi, F.; Ferrandi, E.; Libener, E.; Ferraro, S.; Maris, B.; Chiamulera, C. A virtual reality study on postretrieval extinction of smoking memory reconsolidation in smokers. J. Subst. Abuse Treat. 2021, 125, 108317. [Google Scholar] [CrossRef]
- Benvegnù, G.; Perotti, S.; Vegher, A.; Chiamulera, C. Virtual Reality Environmental Enrichment Effects on Craving for Cigarettes in Smokers. Games Health J. 2025, 14, 21–28. [Google Scholar] [CrossRef]
- Benvegnù, G.; Piva, A.; Cadorin, C.; Mannari, V.; Girondini, M.; Federico, A.; Tamburin, S.; Chiamulera, C. The effects of virtual reality environmental enrichments on craving to food in healthy volunteers. Psychopharmacology 2024, 241, 49–60. [Google Scholar] [CrossRef]
- Benvegnù, G.; Graffer, R.; Lorusso, F.M.; Ceccato, S.; Tedesco, E.; Chiamulera, C. Virtual Reality Environmental Enrichment Effects on Heart Rate Variability in Healthy Volunteers. Psychopharmacology 2025, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Barillot, L.; Chauvet, C.; Besnier, M.; Jaafari, N.; Solinas, M.; Chatard, A. Effect of environmental enrichment on relapse rates in patients with severe alcohol use disorder: Protocol for a randomised controlled trial. BMJ Open 2023, 13, e069249. [Google Scholar] [CrossRef]
- De Tommaso, M.; Ricci, K.; Laneve, L.; Savino, N.; Antonaci, V.; Livrea, P. Virtual visual effect of hospital waiting room on pain modulation in healthy subjects and patients with chronic migraine. Pain Res. Treat. 2013, 2013, 515730. [Google Scholar] [CrossRef] [PubMed]
- Valtchanov, D.; Ellard, C.G. Cognitive and affective responses to natural scenes: Effects of low level visual properties on preference, cognitive load and eye-movements. J. Environ. Psychol. 2015, 43, 184–195. [Google Scholar] [CrossRef]
- Kotera, Y.; Richardson, M.; Sheffield, D. Effects of Shinrin-Yoku (Forest Bathing) and Nature Therapy on Mental Health: A Systematic Review and Meta-analysis. Int. J. Ment. Health Addict. 2022, 20, 337–361. [Google Scholar] [CrossRef]
- Kuo, M. How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Front. Psychol. 2015, 6, 1093. [Google Scholar] [CrossRef]
- Spano, G.; Theodorou, A.; Reese, G.; Carrus, G.; Sanesi, G.; Panno, A. Virtual nature and psychological and psychophysiological outcomes: A systematic review. J. Environ. Psychol. 2023, 89, 102044. [Google Scholar] [CrossRef]
- Newman, M.; Gatersleben, B.; Wyles, K.J.; Ratcliffe, E. The use of virtual reality in environment experiences and the importance of realism. J. Environ. Psychol. 2022, 79, 101733. [Google Scholar] [CrossRef]
- Clemente, D.; Romano, L.; Zamboni, E.; Carrus, G.; Panno, A. Forest therapy using virtual reality in the older population: A systematic review. Front. Psychol. 2023, 14, 1323758. [Google Scholar] [CrossRef]
- Persky, S.; Colloca, L. Medical Extended Reality Trials: Building Robust Comparators, Controls, and Sham. J. Med. Internet Res. 2023, 25, e45821. [Google Scholar] [CrossRef] [PubMed]
- Birckhead, B.; Khalil, C.; Liu, X.; Conovitz, S.; Rizzo, A.; Danovitch, I.; Bullock, K.; Spiegel, B. Recommendations for methodology of virtual reality clinical trials in health care by an international working group: Iterative study. JMIR Ment. Health 2019, 6, e11973. [Google Scholar] [CrossRef]
- Weber, S.; Weibel, D.; Mast, F.W. How to Get There When You Are There Already? Defining Presence in Virtual Reality and the Importance of Perceived Realism. Front. Psychol. 2021, 12, 628298. [Google Scholar] [CrossRef]
- Souza, V.; Maciel, A.; Nedel, L.; Kopper, R. Measuring Presence in Virtual Environments: A Survey. ACM Comput. Surv. 2022, 54, 3466817. [Google Scholar] [CrossRef]
- Barranco Merino, R.; Higuera-Trujillo, J.L.; Llinares Millán, C. The Use of Sense of Presence in Studies on Human Behavior in Virtual Environments: A Systematic Review. Appl. Sci. 2023, 13, 13095. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Y.; Haddouk, L.; Vayatis, N.; Vidal, P.P. Assessing virtual reality presence through physiological measures: A comprehensive review. Front. Virtual Real. 2025, 6, 1530770. [Google Scholar] [CrossRef]
- Finkler, W.; Vlietstra, L.; Waters, D.L.; Zhu, L.; Gallagher, S.; Walker, R.; Forlong, R.; van Heezik, Y. Virtual nature and well-being: Exploring the potential of 360° VR. Appl. Psychol. Health Well-Being 2025, 17, e70008. [Google Scholar] [CrossRef]
- Chirico, A.; Avellone, M.; Palombi, T.; Alivernini, F.; Alessandri, G.; Filosa, L.; Pistella, J.; Baiocco, R.; Lucidi, F. Exploring the Psychological Nexus of Virtual and Augmented Reality on Physical Activity in Older Adults: A Rapid Review. Behav. Sci. 2024, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Matsangidou, M.; Solomou, T.; Frangoudes, F.; Ioannou, K.; Theofanous, P.; Papayianni, E.; Pattichis, C.S. Affective Out-World Experience via Virtual Reality for Older Adults Living with Mild Cognitive Impairments or Mild Dementia. Int. J. Environ. Res. Public Health 2023, 20, 2919. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Duan, B.; Chen, X.; Song, Y.; Liu, X. The Application of Metaverse in Mental Health. Front. Public Health 2025, 13, 1463494. [Google Scholar] [CrossRef]
- Navas-Medrano, S.; Soler-Dominguez, J.L.; Pons, P. Mixed Reality for a Collective and Adaptive Mental Health Metaverse. Front. Psychiatry 2023, 14, 1272783. [Google Scholar] [CrossRef]
- Aboul-Yazeed, R.S.; Darwish, A.; Hassanien, A.E. Flourish the Mood: A Systematic Review on the Impacts of Metaverse on Psychological and Mental Health. Front. Virtual Real. 2025, 6, 1429038. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, T.; Zhu, L.; Gao, Y.; Qiu, L. Exploring psychophysiological restoration and individual preference in the different environments based on virtual reality. Int. J. Environ. Res. Public Health 2019, 16, 3102. [Google Scholar] [CrossRef] [PubMed]
- Bower, I.S.; Hill, A.T.; Enticott, P.G. Functional brain connectivity during exposure to the scale and color of interior built environments. Hum. Brain Mapp. 2023, 44, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Djebbara, Z.; Fich, L.B.; Gramann, K. The brain dynamics of architectural affordances during transition. Sci. Rep. 2021, 11, 82504. [Google Scholar] [CrossRef]
- Hu, M.; Roberts, J. Built Environment Evaluation in Virtual Reality Environments—A Cognitive Neuroscience Approach. Urban Sci. 2020, 4, 48. [Google Scholar] [CrossRef]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.; Mortimer, M.A.; Enticott, P.G. Built Environment Color Modulates Autonomic and EEG Indices of Emotional Response. Psychophysiology 2022, 59, e14121. [Google Scholar] [CrossRef]
- Chiamulera, C.; Mantovani, E.; Tamburin, S. Remote Clinical Trials: A Timely Opportunity for a Virtual Reality Approach and Its Potential Application in Neurology. Br. J. Clin. Pharmacol. 2021, 87, 3639–3642. [Google Scholar] [CrossRef]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective Computing in Virtual Reality: Emotion Recognition from Brain and Heartbeat Dynamics Using Wearable Sensors. Sci. Rep. 2018, 8, 13657. [Google Scholar] [CrossRef]
- Mevlevioğlu, D.; Tabirca, S.; Murphy, D. Anxiety Classification in Virtual Reality Using Biosensors: A Mini Scoping Review. PLoS ONE 2023, 18, e0287984. [Google Scholar] [CrossRef]
- Franke, L.; Park, T.Y.; Luo, J.; Rathi, Y.; Pieper, S.; Ning, L.; Haehn, D. SlicerTMS: Interactive Real-Time Visualization of Transcranial Magnetic Stimulation Using Augmented Reality and Deep Learning. arXiv 2023, arXiv:2305.06459. [Google Scholar] [CrossRef]
- Drigas, A.; Sideraki, A. Brain Neuroplasticity Leveraging Virtual Reality and Brain–Computer Interface Technologies. Sensors 2024, 24, 5725. [Google Scholar] [CrossRef] [PubMed]
- Bondi, E.; Carbone, F.; Pizzolante, M.; Schiena, G.; Ferro, A.; Mazzocut-Mis, M.; Gaggioli, A.; Chirico, A.; Brambilla, P.; Maggioni, E. Integrating Virtual Reality, Electroencephalography, and Transcranial Magnetic Stimulation to Study the Neural Correlates of Awe Experiences: The SUBRAIN Protocol. PLoS ONE 2025, 20, e0302762. [Google Scholar] [CrossRef]
- Chauhan, P.; Das, S.K. Efficacy of Simultaneous Application of Repetitive Transcranial Magnetic Stimulation and Virtual Reality Training on Sensory-Motor and Cognitive Deficits among Stroke Patients: A Protocol for a Randomised Controlled Trial. J. Clin. Diagn. Res. 2024, 18, 5–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zandonai, T.; Chiamulera, C. The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies. Sensors 2025, 25, 5268. https://doi.org/10.3390/s25175268
Zandonai T, Chiamulera C. The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies. Sensors. 2025; 25(17):5268. https://doi.org/10.3390/s25175268
Chicago/Turabian StyleZandonai, Thomas, and Cristiano Chiamulera. 2025. "The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies" Sensors 25, no. 17: 5268. https://doi.org/10.3390/s25175268
APA StyleZandonai, T., & Chiamulera, C. (2025). The Interplay Between Environment and Drug Effects: Decoding the Ecocebo Phenomenon with Virtual Technologies. Sensors, 25(17), 5268. https://doi.org/10.3390/s25175268