Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms
Abstract
1. Introduction
2. Related Work
2.1. ECG Arrhythmia Detection in Classic Datasets
2.2. ECG Arrhythmia Detection in Smartwatches
3. Materials and Methods
- Anaconda Navigator (Version 2.6.3).
- Jupyter Notebook (version 7.3.2).
- Python (Version 3.12.19).
- Tensorflow (Version: 2.19.0).
- Keras (Version: 3.10.0).
- Pandas (Version: 2.2.3).
- Scikit-learn (Version: 1.7.1).
- Numpy (Version: 2.0.1).
- PyWavelets (Version: 1.8.0).
- Matplotlib (Version: 3.10.1).
- Scipy (Version: 1.15.2).
3.1. Proposed Model
3.2. ECG Data Input
3.2.1. MIT-BIH Arrhythmia Database
3.2.2. UMass Medical School Simband Dataset
3.3. Preprocessing
3.3.1. Baseline Drift Removal
3.3.2. Denoising
3.3.3. Z-Score Normalization
3.3.4. Segmentation
3.3.5. Class Coding
3.4. Model Training and Testing
3.4.1. Data Split
- Each patient was uniquely included in either the training set or the test set.
- All ECG windows from the same patient remained in the same set.
3.4.2. Model Architecture
4. Experiments and Results
- Epochs: 50;
- Batch size: 32;
- Loss function: Categorical cross-entropy;
- Optimizer: Adam.
- Accuracy: Measures the model’s precision, i.e., the proportion of correct predictions out of the total samples.
- Sensitivity: Measures the proportion of positive cases correctly classified per class.
- Specificity: Measures the proportion of negative cases correctly identified per class.
- F1-score: Measures the proportion of how well it correctly identifies positives without generating many false positives or negatives.
- AUROC: Measures the ability of a classification model to distinguish between classes.
4.1. Results in UMass Medical School Simband Dataset [18,19]—Effectiveness and Efficiency
- Accuracy: 64.81%;
- Sensitivity: 89.47%;
- Specificity: 6.25%;
- F1-score: 78.16%;
- AUROC: 0.1978;
- AUROC 95% bootstrap CI: 0.1446–0.2485;
- F1-score 95% bootstrap CI: 0.7445–0.8189.
4.2. Results in MIT-BIH Arrhythmia Database [20]
- Accuracy: 99.57%;
- Sensitivity: 99.57%;
- Specificity: 99.47%;
- F1-score: 0.9957;
- AUROC: 0.9958;
- AUROC 95% bootstrap CI: 0.9943–0.9972;
- F1-score 95% bootstrap CI: 0.9946–0.9966.
5. Discussion
5.1. Discussion of Results from UMass Medical School Simband Dataset [18,19]—Effectiveness and Efficiency
- ECG signals are one-dimensional time series. One-dimensional CNNs directly process this structure, avoiding conversions to two-dimensional representations that involve more preprocessing, storage, and the potential loss of fine-grained temporal information.
- Lower parameter count. A typical 1D CNN for ECG (four Conv1D layers with small filters) typically has between and parameters, while 2D-CNN, LSTM, or Transformer-based architectures for the same task can easily exceed parameters.
- Lower FLOPs. Such a 1D CNN can require on the order of to FLOPs, compared to or more for equivalent 2D or LSTM/Transformer networks, resulting in faster inference times.
- Suitability for resource-constrained devices. The lower number of parameters and FLOPs reduces memory usage and allows execution on microcontrollers, embedded hardware, or smartwatches without sacrificing accuracy.
5.2. Discussion of Results from MIT-BIH Arrhythmia Database [20]
6. Ablation Study
6.1. An Ablation Study of the Model Tested on the UMass Medical School Simband Dataset [18,19]—Effectiveness and Efficiency
6.2. An Ablation Study of the Model Tested on the MIT-BIH Arrhythmia Database [20]
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs)—who.int. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 July 2025).
- Kirchhof, P.; Benussi, S.; Kotecha, D. ESC Guidelines for the diagnosis and management of atrial fibrillation. Eur. Heart J. 2020, 42, 373–498. [Google Scholar]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal Process. Control. 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Islam, M.R.; Qaraqe, M.; Qaraqe, K.; Serpedin, E. Cat-net: Convolution, attention, and transformer based network for single-lead ecg arrhythmia classification. Biomed. Signal Process. Control. 2024, 93, 106211. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.R.; Lim, D.S.; Lee, K.H.; Lee, J.S.; Kim, D.Y.; Sohn, C.B. A novel hybrid CNN-transformer model for arrhythmia detection without R-peak identification using stockwell transform. Sci. Rep. 2025, 15, 7817. [Google Scholar] [CrossRef] [PubMed]
- El-Ghaish, H.; Eldele, E. ECGTransForm: Empowering adaptive ECG arrhythmia classification framework with bidirectional transformer. Biomed. Signal Process. Control. 2024, 89, 105714. [Google Scholar] [CrossRef]
- Chen, C.; Hua, Z.; Zhang, R.; Liu, G.; Wen, W. Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed. Signal Process. Control. 2020, 57, 101819. [Google Scholar] [CrossRef]
- Hassan, S.U.; Mohd Zahid, M.S.; Abdullah, T.A.; Husain, K. Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digit. Health 2022, 8, 20552076221102766. [Google Scholar] [CrossRef] [PubMed]
- Alamatsaz, N.; Tabatabaei, L.; Yazdchi, M.; Payan, H.; Alamatsaz, N.; Nasimi, F. A lightweight hybrid CNN-LSTM explainable model for ECG-based arrhythmia detection. Biomed. Signal Process. Control. 2024, 90, 105884. [Google Scholar] [CrossRef]
- Song, Z.; Chen, M.; Li, W.; Niu, L. Smart wearable technologies for continuous and proactive blood pressure monitoring. Innov. Mater. 2023, 1, 100035. [Google Scholar] [CrossRef]
- Abdelrazik, A.; Eldesouky, M.; Antoun, I.; Lau, E.Y.; Koya, A.; Vali, Z.; Suleman, S.A.; Donaldson, J.; Ng, G.A. Wearable devices for arrhythmia detection: Advancements and clinical implications. Sensors 2025, 25, 2848. [Google Scholar] [CrossRef]
- Avram, R.; Ramsis, M.; Cristal, A.D.; Nathan, V.; Zhu, L.; Kim, J.; Kuang, J.; Gao, A.; Vittinghoff, E.; Rohdin-Bibby, L.; et al. Validation of an algorithm for continuous monitoring of atrial fibrillation using a consumer smartwatch. Heart Rhythm 2021, 18, 1482–1490. [Google Scholar] [CrossRef]
- Ploux, S.; Strik, M.; Caillol, T.; Ramirez, F.D.; Abu-Alrub, S.; Marchand, H.; Buliard, S.; Haissaguerre, M.; Bordachar, P. Beyond the wrist: Using a smartwatch electrocardiogram to detect electrocardiographic abnormalities. Arch. Cardiovasc. Dis. 2022, 115, 29–36. [Google Scholar] [CrossRef]
- Ford, C.; Xie, C.X.; Low, A.; Rajakariar, K.; Koshy, A.N.; Sajeev, J.K.; Roberts, L.; Pathik, B.; Teh, A.W. Comparison of 2 smart watch algorithms for detection of atrial fibrillation and the benefit of clinician interpretation: SMART WARS study. Clin. Electrophysiol. 2022, 8, 782–791. [Google Scholar] [CrossRef]
- Abu-Alrub, S.; Strik, M.; Ramirez, F.D.; Moussaoui, N.; Racine, H.P.; Marchand, H.; Buliard, S.; Haïssaguerre, M.; Ploux, S.; Bordachar, P. Smartwatch electrocardiograms for automated and manual diagnosis of atrial fibrillation: A comparative analysis of three models. Front. Cardiovasc. Med. 2022, 9, 836375. [Google Scholar] [CrossRef]
- Wasserlauf, J.; Vogel, K.; Whisler, C.; Benjamin, E.; Helm, R.; Steinhaus, D.A.; Yousuf, O.; Passman, R.S. Accuracy of the Apple watch for detection of AF: A multicenter experience. J. Cardiovasc. Electrophysiol. 2023, 34, 1103–1107. [Google Scholar] [CrossRef]
- Mannhart, D.; Lischer, M.; Knecht, S.; du Fay de Lavallaz, J.; Strebel, I.; Serban, T.; Vögeli, D.; Schaer, B.; Osswald, S.; Mueller, C.; et al. Clinical validation of 5 direct-to-consumer wearable smart devices to detect atrial fibrillation: BASEL wearable study. Clin. Electrophysiol. 2023, 9, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Han, D.; Mercado-Díaz, L.R.; Moon, J.; Chon, K.H. Smartwatch Photoplethysmogram-Based Atrial Fibrillation Detection with Premature Atrial and Ventricular Contraction Differentiation Using Densely Connected Convolutional Neural Networks. In Proceedings of the 2024 IEEE 20th International Conference on Body Sensor Networks (BSN), Chicago, IL, USA, 15–17 October 2024; IEEE: New York, NY, USA, 2024; pp. 1–4. [Google Scholar]
- Bashar, S.K.; Han, D.; Hajeb-Mohammadalipour, S.; Ding, E.; Whitcomb, C.; McManus, D.D.; Chon, K.H. Atrial fibrillation detection from wrist photoplethysmography signals using smartwatches. Sci. Rep. 2019, 9, 15054. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lee, K.; Mokhtar, S.A.; Ismail, I.; Pauzi, A.L.b.M.; Zhang, Q.; Lim, P.Y. Deep learning-based ECG arrhythmia classification: A systematic review. Appl. Sci. 2023, 13, 4964. [Google Scholar] [CrossRef]
- Ansari, Y.; Mourad, O.; Qaraqe, K.; Serpedin, E. Deep learning for ECG Arrhythmia detection and classification: An overview of progress for period 2017–2023. Front. Physiol. 2023, 14, 1246746. [Google Scholar] [CrossRef]
- Lichaee, F.K.; Salari, A.; Jalili, J.; Dalivand, S.B.; Rad, M.R.; Mojarad, M. Advancements in artificial intelligence for ECG signal analysis and arrhythmia detection: A review. Int. J. Cardiovasc. Pract. 2023, 8, e143437. [Google Scholar]
- Huillcen Baca, H.A.; Muñoz Del Carpio Toia, A.; Sulla Torres, J.A.; Cusirramos Montesinos, R.; Contreras Salas, L.A.; Correa Herrera, S.C. Detection of Arrhythmias Using Heart Rate Signals from Smartwatches. Appl. Sci. 2024, 14, 7233. [Google Scholar] [CrossRef]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Atrial fibrillation detection using stationary wavelet transform and deep learning. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Ullah, A.; Anwar, S.M.; Bilal, M.; Mehmood, R.M. Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation. Remote. Sens. 2020, 12, 1685. [Google Scholar] [CrossRef]
- Zubair, M.; Yoon, C. Cost-sensitive learning for anomaly detection in imbalanced ECG data using convolutional neural networks. Sensors 2022, 22, 4075. [Google Scholar] [CrossRef]
- Rizqyawan, M.; Siradj, Y.; Amri, M.; Pratondo, A. Re-implementation of convolutional neural network for arrhythmia detection. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1319–1326. [Google Scholar] [CrossRef]
- Ojha, M.K.; Wadhwani, S.; Wadhwani, A.K.; Shukla, A. Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier. Phys. Eng. Sci. Med. 2022, 45, 665–674. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M. A novel deep-learning-based framework for the classification of cardiac arrhythmia. J. Imaging 2022, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Midani, W.; Ouarda, W.; Ayed, M.B. DeepArr: An investigative tool for arrhythmia detection using a contextual deep neural network from electrocardiograms (ECG) signals. Biomed. Signal Process. Control. 2023, 85, 104954. [Google Scholar] [CrossRef]
- Akan, T.; Alp, S.; Bhuiyan, M.A.N. ECGformer: Leveraging transformer for ECG heartbeat arrhythmia classification. In Proceedings of the 2023 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 13–15 December 2023; IEEE: New York, NY, USA, 2023; pp. 1412–1417. [Google Scholar]
- Busia, P.; Scrugli, M.A.; Jung, V.J.B.; Benini, L.; Meloni, P. A tiny transformer for low-power arrhythmia classification on microcontrollers. IEEE Trans. Biomed. Circuits Syst. 2024, 19, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kim, J.; Park, J.; Ko, H.; Kyung, Y. TinyML-based classification in an ECG monitoring embedded system. Comput. Mater. Contin. 2023, 75, 1751–1764. [Google Scholar] [CrossRef]
- Alvarado Barros, X.A.; Sabagay Vizueta, G.S.; Criollo Bonilla, R.R. Desarrollo de un Sistema de Monitoreo Cardíaco Inteligente de bajo Costo Utilizando TinyML. Ph.D. Thesis, ESPOL, FIEC, Guayaquil, Ecuador, 2025. [Google Scholar]
- Cheung, C.C.; Krahn, A.D.; Andrade, J.G. The emerging role of wearable technologies in detection of arrhythmia. Can. J. Cardiol. 2018, 34, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195. [Google Scholar] [CrossRef] [PubMed]
- Pay, L.; Yumurtaş, A.Ç.; Satti, D.I.; Hui, J.M.H.; Chan, J.S.K.; Mahalwar, G.; Lee, Y.H.A.; Tezen, O.; Birdal, O.; Inan, D.; et al. Arrhythmias beyond atrial fibrillation detection using smartwatches: A systematic review. Anatol. J. Cardiol. 2023, 27, 126. [Google Scholar] [CrossRef] [PubMed]
- Bogár, B.; Peto, D.; Sipos, D.; Füredi, G.; Keszthelyi, A.; Betlehem, J.; Pandur, A.A. Detection of arrhythmias using smartwatches—A systematic literature review. Healthcare 2024, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz Pomares, A. Revisión Sistemática de la Detección de Fibrilación Auricular Mediante el Electrocardiograma Realizado por Parte de los Dispositivos Inteligentes de Muñeca. 2023. Available online: https://dspace.umh.es/bitstream/11000/29274/1/ALCARAZ%20POMARES%2C%20ANA%2C%20TFG.pdf (accessed on 11 July 2025).
Paper | Year | Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Xia et al. [25] | 2017 | CNN | 98.63 | 98.79 | 98.87 |
Ullah et al. [26] | 2020 | CNN | 99.11 | 97.91 | 99.61 |
Zubair et al. [27] | 2022 | CNN | 96.36 | 70.60 | 96.16 |
Rizqyawan et al. [28] | 2022 | DCNN | 90.22 | 35.64 | 87.87 |
Ojha et al. [29] | 2022 | CNN | 99.53 | 98.24 | 97.58 |
Jamil & Rahman [30] | 2022 | DCNN | 94.84 | 100.00 | 99.60 |
Chen et al. [7] | 2020 | CNN + LSTM | 99.32 | 97.50 | 98.70 |
Hassan et al. [8] | 2022 | CNN + BiLSTM | 98.00 | 91.00 | - |
Midani et al. [31] | 2023 | CNN + BiLSTM | 99.46 | 97.10 | 99.57 |
Alamatsaz et al. [9] | 2024 | CNN + LSTM | 98.24 | - | - |
Akan et al. [32] | 2023 | Transformer-Attention | 98.00 | 98.00 | - |
Islam et al. [4] | 2024 | Transformer-Attention | 99.14 | - | - |
El-Ghaish et al. [6] | 2024 | Transformer-Attention | 99.35 | - | - |
Kim et al. [5] | 2025 | Transformer-Attention | 99.58 | - | - |
Busia et al. [33] | 2024 | TinyML | 98.97 | - | - |
Kim et al. [34] | 2023 | TinyML | 97.00 | - | - |
Paper | Year | Data | Method | Patients | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
Avran et al. [12] | 2021 | Smartwatch ECG Samsung Galaxy Watch 2 | Machine Learning | 204 | - | 88 | 97 |
Ploux et al. [13] | 2022 | Smartwatch ECG Apple Watch 4 | DNN | 260 | 92 | 91 | 94 |
Ford et al. [14] | 2022 | Smartwatch ECG Apple Watch 4 | Machine Learning | 125 | 87 | 68 | 93 |
Abu-Alrub et al. [15] | 2022 | Smartwatch ECG Samsung Galaxy Watch 3 | Machine Learning | 200 | - | 88 | 81 |
Wasserlauf et al. [16] | 2023 | Smartwatch ECG Apple Watch 4 | CNN | 250 | - | 25 | 99 |
Mannhart et al. [17] | 2023 | Smartwatch ECG Samsung Galaxy Watch 4 | CNN | 201 | - | 58 | 75 |
Class | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
(N) Normal | 64.81 | 6.25 | 89.47 |
(A) Arrhythmia | 64.81 | 89.47 | 6.25 |
Class | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
N | 99.62 | 99.77 | 99.19 |
L | 99.98 | 99.94 | 99.98 |
R | 99.98 | 99.94 | 99.98 |
A | 99.70 | 93.19 | 99.87 |
V | 99.86 | 98.99 | 99.93 |
Paper | Year | Data | Method | Patients | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
Avran et al. [12] | 2021 | Smartwatch ECG Samsung Galaxy Watch 2 | Machine Learning | 204 | - | 88 | 97 |
Ploux et al. [13] | 2022 | Smartwatch ECG Apple Watch 4 | DNN | 260 | 92 | 91 | 94 |
Ford et al. [14] | 2022 | Smartwatch ECG Apple Watch 4 | Machine Learning | 125 | 87 | 68 | 93 |
Abu-Alrub et al. [15] | 2022 | Smartwatch ECG Samsung Galaxy Watch 3 | Machine Learning | 200 | - | 88 | 81 |
Wasserlauf et al. [16] | 2023 | Smartwatch ECG Apple Watch 4 | CNN | 250 | - | 25 | 99 |
Mannhart et al. [17] | 2023 | Smartwatch ECG Samsung Galaxy Watch 4 | CNN | 201 | - | 58 | 75 |
Our Proposal | 2025 | Smartwatch ECG Samsung Simband 2 | CNN | 37 | 64.81 | 89.47 | 6.25 |
Paper | Year | Method | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Xia et al. [25] | 2017 | CNN | 98.63 | 98.79 | 98.87 |
Ullah et al. [26] | 2020 | CNN | 99.11 | 97.91 | 99.61 |
Zubair et al. [27] | 2022 | CNN | 96.36 | 70.60 | 96.16 |
Rizqyawan et al. [28] | 2022 | DCNN | 90.22 | 35.64 | 87.87 |
Ojha et al. [29] | 2022 | CNN | 99.53 | 98.24 | 97.58 |
Jamil & Rahman [30] | 2022 | DCNN | 94.84 | 100.00 | 99.60 |
Chen et al. [7] | 2020 | CNN + LSTM | 99.32 | 97.50 | 98.70 |
Hassan et al. [8] | 2022 | CNN + BiLSTM | 98.00 | 91.00 | - |
Midani et al. [31] | 2023 | CNN + BiLSTM | 99.46 | 97.10 | 99.57 |
Alamatsaz et al. [9] | 2024 | CNN + LSTM | 98.24 | - | - |
Akan et al. [32] | 2023 | Transformer-Attention | 98.00 | 98.00 | - |
Islam et al. [4] | 2024 | Transformer-Attention | 99.14 | - | - |
El-Ghaish et al. [6] | 2024 | Transformer-Attention | 99.35 | - | - |
Kim et al. [5] | 2025 | Transformer-Attention | 99.58 | - | - |
Busia et al. [33] | 2024 | TinyML | 98.97 | - | - |
Kim et al. [34] | 2023 | TinyML | 97.00 | - | - |
Our Proposal | 2025 | CNN | 99.57 | 99.57 | 99.47 |
Variant | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
With Leave-One-Subject-Out Cross-Validation (LOSO) and without resampling (proposal) | 64.81 | 89.47 | 6.25 |
With Leave-One-Subject-Out Cross-Validation (LOSO) and with resampling | 66.05 | 98.72 | 52.10 |
Without Leave-One-Subject-Out Cross-Validation (LOSO) and with resampling | 98.73 | 98.73 | 97.52 |
With three-layer Conv1D | 43.21 | 59.21 | 52.10 |
Size kernel (13, 15, 17, 19) | 58.02 | 71.49 | 26.04 |
Variant | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
with Leave-One-Subject-Out cross-validation (LOSO) and without resampling (proposal) | 99.57 | 99.57 | 99.47 |
with Leave-One-Subject-Out cross-validation (LOSO) and with resampling | 98.69 | 98.69 | 98.38 |
without Leave-One-Subject-Out cross-validation (LOSO) and with resampling | 99.64 | 99.64 | 99.90 |
with three-layer Conv1D | 99.47 | 98.11 | 99.75 |
size kernel (13, 15, 17, 19) | 98.69 | 98.17 | 99.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca, H.A.H.; Valdivia, F.d.L.P. Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms. Sensors 2025, 25, 5244. https://doi.org/10.3390/s25175244
Baca HAH, Valdivia FdLP. Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms. Sensors. 2025; 25(17):5244. https://doi.org/10.3390/s25175244
Chicago/Turabian StyleBaca, Herwin Alayn Huillcen, and Flor de Luz Palomino Valdivia. 2025. "Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms" Sensors 25, no. 17: 5244. https://doi.org/10.3390/s25175244
APA StyleBaca, H. A. H., & Valdivia, F. d. L. P. (2025). Efficient Deep Learning-Based Arrhythmia Detection Using Smartwatch ECG Electrocardiograms. Sensors, 25(17), 5244. https://doi.org/10.3390/s25175244