Research on Loosening Fault Diagnosis Method of Escalator Drive Mainframe Anchor Bolts Based on Improved High-Strength Denoising RCDAE Model
Abstract
1. Introduction
2. Common Neural Network Models
2.1. CNN Network
2.2. Transformer Network
2.3. Autoencoder Network
3. Algorithmic Framework
3.1. Structure of Improved High-Strength Denoising RCDAE Model
3.1.1. DMS Loss Function
3.1.2. RCDAE Architecture
3.1.3. Gated Residual Mechanism
3.2. CNN–Transformer Hybrid Architecture with Time–Frequency Cross-Attention
3.3. Time–Frequency RCDAE–CNN–Transformer Model for Escalator Drive Mainframe Anchor Bolt Loosening Diagnosis
4. Experimental Validation
4.1. Test Platform
4.2. Data Acquisition Protocol
4.2.1. Raw Data Acquisition
4.2.2. Noisy Data Simulation
4.3. Model Training and Performance Visualization
4.3.1. Model Training
4.3.2. Performance Comparison of Different Models on Raw Data Set of Bolt Loosening
4.3.3. Performance Comparison of Different Models on Bolt Loosening Noise Dataset
4.3.4. Validation Experiment of DMS Loss Function on Bolt Loosening Dataset
4.4. CWRU Bearing Dataset Experiments
4.4.1. Performance Comparison of Different Models on Raw Data Set of CWRU Bearing Dataset
4.4.2. Performance Comparison of Different Models on CWRU Bearing Noise Dataset
4.4.3. Validation Experiment of DMS Loss Function on CWRU Bearing Dataset
5. Results and Discussion
5.1. Signal Contribution Weight Visualization
5.2. Visual Chart for Analysis of Bolt Loosening Experimental Results
5.3. Visual Chart for Analysis of CWRU Bearing Dataset Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, J.; Zhang, D.; Sun, Y.; Tang, X.; Chen, Z. Cloud-edge Collaboration Oriented Intelligent Edge Diagnosis for Escalator Bearing. Mech. Electr. Eng. Technol. 2024, 50, 101–107. [Google Scholar]
- Li, H.; Wang, Y.; Xing, Y.; Zhao, X.; Wang, K. Contributing Factors Affecting the Severity of Metro Escalator Injuries in the Guangzhou Metro, China. Int. J. Environ. Res. Public Health 2021, 18, 651. [Google Scholar] [CrossRef]
- Saeed, A.B.; Gitaffa, S.A.; Dawai, R.I. FPGA-Based Realization of Intelligent Escalator Controller Using Artificial Neural Network. J. Electr. Comput. Eng. 2025, 2025, 7567924. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Yu, F. Progress of Escalator Online Monitoring and Fault Diagnosis Technology. China Spec. Equip. Saf. 2022, 38, 1–7+13. [Google Scholar]
- Ma, H.; Li, Z.; Wang, Z.; Feng, R.; Li, G.; Xu, J. Research on Measuring Device and Quantifiable Risk Assessment Method Based on Fmea of Escalator Brake. Adv. Mech. Eng. 2021, 13, 16878140211001963. [Google Scholar] [CrossRef]
- Wang, D. Research on Escalator Fault Diagnosis Based on Expert Knowledge and Vibration Signal Analysis. Master’s Thesis, Northeastern University, Shenyang, China, 2022. [Google Scholar]
- Kahali, D.; Rastogi, R. Comparative Analysis of Escalator Capacity at Metro Stations: Theory Versus Practice. Transportation 2021, 48, 3121–3141. [Google Scholar] [CrossRef]
- Li, N.; Cao, Z.; Bao, W.; Lin, S.; Zou, T.; Yan, M. Experimental Study and Finite Element Analysis of Heavy-Duty Escalator Truss under Full Load Conditions. Sci. Rep. 2024, 14, 4825. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Wu, T.; Zhu, L.; Qin, J.; Yang, X. Effects of Slope and Speed of Escalator on the Dispersion of Cough-Generated Droplets from a Passenger. Phys. Fluids 2021, 33, 041701. [Google Scholar] [CrossRef]
- Jiao, Z.; Lei, H.; Zong, H.; Cai, Y.; Zhong, Z. Potential Escalator-Related Injury Identification and Prevention Based on Multi-Module Integrated System for Public Health. Mach. Vis. Appl. 2022, 33, 29. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, Y.; Jiang, X.; Yang, L. Requirements Analysis and Overall Design of Escalator Condition Monitoring and Early Warning System. In Proceedings of the Seventh International Conference on Mechatronics and Intelligent Robotics (ICMIR 2023), Kunming, China, 19–21 May 2023. [Google Scholar]
- Tang, X. Research on Edge Diagnosis Technology of Escalator Motor Bearing Based on Deep Transfer Learning. Master’s Thesis, South China University of Technology, Guangzhou, China, 2023. [Google Scholar]
- Pereira, R.C.A.; da Silva, O.S., Jr.; de Mello Bandeira, R.A.; dos Santos, M.; de Souza Rocha, C., Jr.; Castillo, C.d.S.; Gomes, C.F.S.; de Moura Pereira, D.A.; Muradas, F.M. Evaluation of Smart Sensors for Subway Electric Motor Escalators through Ahp-Gaussian Method. Sensors 2023, 23, 4131. [Google Scholar] [CrossRef]
- You, F.; Wang, D. Escalator Fault Diagnosis Method Based on Svm and Feature Frequency Extraction. In Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 15–17 August 2022. [Google Scholar]
- Bi, X. Classification and Cause Analysis of Common Faults of Escalators. China Elavator 2024, 35, 78–80. [Google Scholar]
- Wang, Z. Research and Application of Fault Monitoring and Intelligent Diagnosis Technology of Metro Escalator. Master’s Thesis, Lanzhou Jiaotong University, Lanzhou, China, 2024. [Google Scholar]
- He, C.; Zheng, B.; Shi, X. Research of Rail Impact of Escalator Based on Residual Peak Envelope Method. In Proceedings of the 2023 6th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–29 May 2023. [Google Scholar]
- Zhang, X. Research on Key Technologies for Intelligent Analysis of Escalator Risk Management in Large Transportation Hub. In Proceedings of the 2024 International Conference on Urban Construction and Transportation (UCT 2024), Harbin, China, 19–21 January 2024. [Google Scholar]
- Chen, Z.; Zhang, H.; Xu, X.; Liu, W.; She, K.; Qiu, B. Review of Fault Modes and Fault Diagnosis Methods for Elevator Systems. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4913944 (accessed on 20 July 2025).
- Zhang, P. Research on Escalator Performance Monitoring and Cause Investigation Based on Vibration Signal. Doctoral Dissertation, Northeastern University, Shenyang, China, 2022. [Google Scholar]
- Chen, J.; Qi, Z.; Yang, N.; Luo, W. Development and Application of Vibration Comfort Detection Device for Escalator Based on Mems Acceleration Sensor. In Proceedings of the 2022 2nd International Conference on Measurement Control and Instrumentation (MCAI 2022), Guangzhou, China, 22–24 July 2022. [Google Scholar]
- Song, L. Research on Health Prediction of Rotating Machinery Based on Deep Learning. Doctoral Thesis, Southwest University of Science and Technology, Mianyang, China, 2023. [Google Scholar]
- Jiang, X.Y.; Yuan, H.B.; Zhang, Z.Z.; Chen, B.Y.; Tong, Y.F. Design of Internet of Things-Based Escalator Condition Monitoring and Early Warning System. In Proceedings of the 2024 International Conference on Industrial IoT, Big Data and Supply Chain (IIoTBDSC), Wuhan, China, 20–22 September 2024. [Google Scholar]
- Qian, S.; Ke, Z.; Huang, W.; Liu, N.; Guo, W.; Gu, Q.; Wu, H. Research on Failure Diagnosing by the escalator vibration signal with FFT algorithm. Autom. Instrum. 2023, 10, 73–78. [Google Scholar]
- Han, P.; He, C.; Lu, S. Bearing incipient fault diagnosis based on VMD and enhanced envelope spectrum. J. Mech. Electr. Eng. 2022, 39, 895–902+926. [Google Scholar]
- Zhang, Y. Analysis of Escalator Based on Spectral Kurtosis and Envelope Demodulation Method Diagnosis and Application of Motor Bearing Faults. In Proceedings of the 2023 2nd International Conference on Automation, Robotics and Computer Engineering (ICARCE), Wuhan, China, 14–16 December 2023. [Google Scholar]
- You, F.; Wang, D.; Li, G.; Chen, C. Fault Diagnosis Method of Escalator Step System Based on Vibration Signal Analysis. Int. J. Control Autom. Syst. 2022, 20, 3222–3232. [Google Scholar] [CrossRef]
- Wang, W. Escalator Foundation Bolt Loosening Fault Recognition Based on Empirical Wavelet Transform and Multi-Scale Gray-Gradient Co-Occurrence Matrix. Sensors 2023, 23, 6801. [Google Scholar]
- Duan, Y.; Huang, M.; Wang, S.; Liu, Y. Research on escalator bearing fault diagnosis method based on CNN-Transformer model. Mod. Electron. Tech. 2024, 47, 1–6. [Google Scholar]
- Tan, B.; Huang, M.; Liu, Y.; An, Q. Software design of escalator monitoring based on CNN-LSTM fault diagnosis method. Electr. Meas. Technol. 2023, 46, 1–7. [Google Scholar]
- Cao, J.; Yu, Y.; Wang, Q.; Dong, Y. Research on intelligent diagnosis of motor bearing faults based on optimized VMD-CNN-BiLSTM. Mod. Electron. Tech. 2024, 47, 115–121. [Google Scholar]
- Jiang, X.; Zhang, Z.; Yuan, H.; He, J.; Tong, Y. DAE-Bilstm Model for Accurate Diagnosis of Bearing Faults in Escalator Principal Drive Systems. Processes 2025, 13, 202. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Xuan, J.; Shi, T. Biologically Inspired Compound Defect Detection Using a Spiking Neural Network with Continuous Time–Frequency Gradients. Adv. Eng. Inform. 2024, 65, 103–132. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Łukasz, K.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Li, P.; Pei, Y.; Li, J. A Comprehensive Survey on Design and Application of Autoencoder in Deep Learning. Appl. Soft Comput. 2023, 138, 110176. [Google Scholar] [CrossRef]
- Al Najjar, Y. Comparative Analysis of Image Quality Assessment Metrics: Mse, Psnr, Ssim and Fsim. Int. J. Sci. Res. 2024, 3, 110–114. [Google Scholar] [CrossRef]
- Rengasamy, D.; Jafari, M.; Rothwell, B.; Chen, X.; Figueredo, G.P. Deep Learning with Dynamically Weighted Loss Function for Sensor-Based Prognostics and Health Management. Sensors 2020, 3, 723. [Google Scholar] [CrossRef]
- Queiroz, S.; Vilela, J.P.; Ng, B.K.K.; Lam, C.T.; Monteiro, E. Fast Computation of the Discrete Fourier Transform Rectangular Index Coefficients. arXiv 2025, arXiv:2504.12551. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Tian, S. Cross-Attention Interaction Learning Network for Multi-Model Image Fusion Via Transformer. Eng. Appl. Artif. Intell. 2025, 139, 109583. [Google Scholar] [CrossRef]
- Eraliev, O.; Lee, K.H.; Lee, C.H. Vibration-Based Loosening Detection of a Multi-Bolt Structure Using Machine Learning Algorithms. Sensors 2022, 3, 1210. [Google Scholar] [CrossRef]
- Hao, J.; Shi, S.; Zhang, Y.; Li, X.; Ren, X.; Gao, J.; Liu, S.; Zhang, H.; Wu, J.; Zhang, B. A High Signal-to-Noise Ratio Nir Fluorescent Probe for Viscosity Detection in Nafld Diagnosis. Sens. Actuators B Chem. 2025, 433, 137581. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 2, 425. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Peng, D.; Qin, Y. Understanding and Learning Discriminant Features Based on Multiattention 1dcnn for Wheelset Bearing Fault Diagnosis. IEEE Trans. Ind. Inform. 2019, 9, 5735–5745. [Google Scholar] [CrossRef]
- Lai, H.; Huang, T.; Lu, B.; Zhang, S.; Xiaog, R. Silhouette Coefficient-Based Weighting K-Means Algorithm. Neural Comput. Appl. 2025, 37, 3061–3075. [Google Scholar] [CrossRef]
Encoder | Conv Layer Parameters (In, Out, Kernel Size, Stride, Padding) |
---|---|
Conv1d_1 | (1, 64, 11, 0, 5) |
Conv1d_2 | (64, 128, 3, 2, 1) |
Conv1d_3 | (128, 256, 3, 2, 1) |
Decoder | Conv layer parameters (in, out, kernel size, stride, padding) |
Conv1d_1 | (256, 128, 3, 2, 1) |
Conv1d_2 | (128, 64, 3, 2, 1) |
Conv1d_3 | (64, 1, 11, 0, 5) |
Class | Fault Location | Severity Level | Sample Count |
---|---|---|---|
0 | Drive Mainframe Anchor Bolt | Normal | 580 |
1 | Drive Mainframe Anchor Bolt | Mild Loosening | 580 |
2 | Drive Mainframe Anchor Bolt | Moderate Loosening | 580 |
4 | Drive Mainframe Anchor Bolt | Severe Loosening | 580 |
Model | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) |
---|---|---|---|---|
1DCNN | 96.88 | 96.58 | 96.58 | 96.58 |
WDCNN [45] | 95.83 | 95.65 | 96.08 | 95.49 |
MA1DCNN [46] | 93.75 | 93.57 | 93.72 | 93.63 |
CNN–BiLSTM | 98.67 | 98.66 | 98.66 | 98.66 |
CNN–Transformer | 99.17 | 99.14 | 99.14 | 99.14 |
CAE–CNN–Transformer | 94.79 | 94.52 | 95.23 | 94.71 |
RCDAE–CNN–Transformer | 99.55 | 99.55 | 99.55 | 99.55 |
SNR | 10 db | 8 db | 6 db | 4 db | 2 db | 0 db | −2 db | −4 db | −6 db | −8 db | −10 db |
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Accuracy (%) | ||||||||||
1DCNN | 92.71 | 83.85 | 81.25 | 71.35 | 61.46 | 68.23 | 88.54 | 65.10 | 84.90 | 82.81 | 79.17 |
WDCNN | 94.27 | 90.62 | 91.15 | 93.23 | 77.08 | 78.65 | 85.42 | 73.44 | 89.06 | 89.58 | 88.54 |
MA1DCNN | 93.23 | 84.90 | 93.75 | 72.92 | 66.67 | 72.40 | 90.62 | 70.31 | 86.46 | 82.81 | 85.42 |
CNN– Transformer | 97.32 | 95.09 | 95.98 | 93.75 | 87.10 | 87.95 | 90.62 | 82.59 | 91.50 | 92.41 | 89.29 |
CAE–CNN– Transformer | 94.79 | 92.19 | 92.71 | 88.54 | 70.31 | 79.17 | 68.75 | 76.04 | 89.58 | 84.38 | 83.85 |
RCDAE–CNN– Transformer | 98.21 | 97.77 | 97.92 | 94.64 | 89.73 | 89.29 | 94.60 | 88.40 | 95.09 | 93.75 | 93.30 |
SNR (db) | No Noise | 10 db | 8 db | 6 db | 4 db | 2 db | 0 db | −2 db | −4 db | −6 db | −8 db | −10 db |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | 99.48 | 97.40 | 94.27 | 94.79 | 94.27 | 88.75 | 89.01 | 93.23 | 86.98 | 92.19 | 93.23 | 92.71 |
SSIM | 99.48 | 96.88 | 93.75 | 95.83 | 92.19 | 87.54 | 85.94 | 94.27 | 83.33 | 93.23 | 91.25 | 90.95 |
Fixed weight | 97.92 | 92.71 | 84.38 | 72.40 | 86.46 | 66.67 | 72.40 | 79.17 | 78.12 | 71.88 | 88.02 | 81.25 |
DMS | 99.56 | 98.21 | 97.77 | 97.92 | 94.64 | 89.73 | 89.29 | 94.60 | 88.40 | 95.09 | 93.75 | 93.30 |
Model | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) |
---|---|---|---|---|
1DCNN | 90.62 | 90.76 | 91.42 | 90.87 |
WDCNN | 93.23 | 93.79 | 93.49 | 93.15 |
MA1DCNN | 88.02 | 88.99 | 89.13 | 88.79 |
CNN–BiLSTM | 95.54 | 95.88 | 95.91 | 95.63 |
CNN–Transformer | 97.32 | 96.99 | 97.05 | 96.95 |
CAE–CNN–Transformer | 94.79 | 94.86 | 94.44 | 94.58 |
RCDAE–CNN–Transformer | 99.11 | 99.25 | 99.09 | 99.15 |
SNR (db) | 10 db | 8 db | 6 db | 4 db | 2 db | 0 db | −2 db | −4 db | −6 db | −8 db | −10 db |
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Accuracy (%) | ||||||||||
1DCNN | 79.17 | 81.77 | 84.90 | 84.88 | 73.44 | 82.81 | 89.06 | 74.48 | 78.65 | 79.69 | 69.27 |
WDCNN | 86.46 | 86.46 | 90.62 | 72.40 | 85.42 | 84.90 | 95.83 | 81.25 | 86.46 | 91.15 | 82.29 |
MA1DCNN | 83.33 | 85.42 | 88.02 | 75.52 | 81.77 | 90.10 | 95.83 | 84.38 | 90.10 | 90.62 | 84.38 |
CNN– Transformer | 95.09 | 96.43 | 95.09 | 88.39 | 92.41 | 92.86 | 94.20 | 91.96 | 92.41 | 92.41 | 93.30 |
CAE–CNN– Transformer | 92.18 | 94.58 | 90.17 | 85.45 | 88.79 | 84.56 | 91.17 | 85.28 | 89.87 | 85.45 | 90.78 |
RCDAE–CNN– Transformer | 95.54 | 96.88 | 96.88 | 90.62 | 95.09 | 93.75 | 95.54 | 93.30 | 94.64 | 92.89 | 93.75 |
SNR (db) | No Noise | 10 db | 8 db | 6 db | 4 db | 2 db | 0 db | −2 db | −4 db | −6 db | −8 db | −10 db |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | 97.40 | 90.62 | 96.88 | 94.27 | 81.77 | 80.73 | 93.23 | 95.48 | 81.77 | 87.50 | 89.06 | 92.19 |
SSIM | 96.54 | 95.12 | 96.35 | 94.55 | 83.85 | 87.50 | 92.85 | 94.23 | 92.19 | 94.35 | 91.54 | 89.58 |
Fixed weight | 96.88 | 94.79 | 95.45 | 96.35 | 83.33 | 86.98 | 93.23 | 92.25 | 92.71 | 93.69 | 91.77 | 93.75 |
DMS | 97.77 | 95.54 | 96.88 | 96.88 | 90.62 | 95.09 | 93.75 | 95.54 | 93.30 | 94.64 | 92.89 | 93.75 |
1DCNN | WDCNN | MA1DCNN | CNN– Transformer | CAE–CNN– Transformer | RCDAE–CNN– Transformer | |
---|---|---|---|---|---|---|
No noise | −0.0636 | −0.0598 | −0.0581 | −0.0625 | −0.0677 | −0.0579 |
10 db | −0.0498 | −0.0550 | −0.0691 | −0.0575 | −0.0487 | −0.0472 |
8 db | −0.0526 | −0.0466 | −0.1021 | −0.0471 | −0.0531 | −0.0466 |
6 db | −0.0460 | −0.0467 | −0.0917 | −0.0552 | −0.0633 | −0.0401 |
4 db | −0.0321 | −0.0477 | −0.0661 | −0.0669 | −0.0552 | −0.0411 |
2 db | −0.0575 | −0.0606 | −0.0652 | −0.0584 | −0.0564 | −0.0495 |
0 db | −0.0626 | −0.0431 | −0.0782 | −0.0598 | −0.0550 | −0.0537 |
−2 db | −0.0478 | −0.0506 | −0.0543 | −0.0699 | −0.0494 | −0.0472 |
−4 db | −0.0673 | −0.0606 | −0.0697 | −0.0621 | −0.0522 | −0.0506 |
−6 db | −0.0703 | −0.0500 | −0.0923 | −0.0516 | −0.0503 | −0.0457 |
−8 db | −0.0570 | −0.0695 | −0.0621 | −0.0578 | −0.0595 | −0.0499 |
−10 db | −0.0678 | −0.0737 | −0.0896 | −0.0694 | −0.0629 | −0.0601 |
Class | Fault Location | Diameter of Fault |
---|---|---|
c1 | Normal | Normal |
c2 | Inner | 0.007 inch |
c3 | Ball | 0.007 inch |
c4 | Outer | 0.007 inch |
c5 | Inner | 0.014 inch |
c6 | Ball | 0.014 inch |
c7 | Outer | 0.014 inch |
c8 | Inner | 0.021 inch |
c9 | Ball | 0.021 inch |
c10 | Outer | 0.021 inch |
1DCNN | WDCNN | MA1DCNN | CNN– Transformer | CAE–CNN– Transformer | RCDAE–CNN– Transformer | |
---|---|---|---|---|---|---|
No noise | −0.1897 | −0.1750 | −0.2435 | −0.1485 | −0.1749 | −0.1596 |
10 db | −0.1980 | −0.1591 | −0.2273 | −0.1551 | −0.1511 | −0.1367 |
8 db | −0.1460 | −0.1658 | −0.1617 | −0.1489 | −0.1575 | −0.1320 |
6 db | −0.2098 | −0.1613 | −0.1726 | −0.1447 | −0.1657 | −0.1578 |
4 db | −0.2073 | −0.1462 | −0.1504 | −0.1452 | −0.1541 | −0.1293 |
2 db | −0.1968 | −0.1558 | −0.2165 | −0.1611 | −0.1933 | −0.1402 |
0 db | −0.1528 | −0.1411 | −0.1887 | −0.1599 | −0.1702 | −0.1331 |
−2 db | −0.1308 | −0.1166 | −0.1561 | −0.1210 | −0.1649 | −0.1072 |
−4 db | −0.1691 | −0.1512 | −0.1692 | −0.1544 | −0.1801 | −0.1390 |
−6 db | −0.1824 | −0.1537 | −0.1634 | −0.1692 | −0.1646 | −0.1495 |
−8 db | −0.1571 | −0.1512 | −0.1428 | −0.1415 | −0.1454 | −0.1356 |
−10 db | −0.1578 | −0.1578 | −0.1494 | −0.1618 | −0.2066 | −0.1314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Chen, M.; Lang, B.; Wang, X.; Xu, Q.; Shen, J.; Liang, L.; Luo, Q. Research on Loosening Fault Diagnosis Method of Escalator Drive Mainframe Anchor Bolts Based on Improved High-Strength Denoising RCDAE Model. Sensors 2025, 25, 5219. https://doi.org/10.3390/s25175219
Chen D, Chen M, Lang B, Wang X, Xu Q, Shen J, Liang L, Luo Q. Research on Loosening Fault Diagnosis Method of Escalator Drive Mainframe Anchor Bolts Based on Improved High-Strength Denoising RCDAE Model. Sensors. 2025; 25(17):5219. https://doi.org/10.3390/s25175219
Chicago/Turabian StyleChen, Dongdong, Minghui Chen, Binxin Lang, Xiaoqing Wang, Qiang Xu, Jiong Shen, Lihua Liang, and Qin Luo. 2025. "Research on Loosening Fault Diagnosis Method of Escalator Drive Mainframe Anchor Bolts Based on Improved High-Strength Denoising RCDAE Model" Sensors 25, no. 17: 5219. https://doi.org/10.3390/s25175219
APA StyleChen, D., Chen, M., Lang, B., Wang, X., Xu, Q., Shen, J., Liang, L., & Luo, Q. (2025). Research on Loosening Fault Diagnosis Method of Escalator Drive Mainframe Anchor Bolts Based on Improved High-Strength Denoising RCDAE Model. Sensors, 25(17), 5219. https://doi.org/10.3390/s25175219