Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields
Abstract
1. Introduction
- –
- To present a fusion technique capable of providing NDVI with a high spatial resolution of 3 m, enabling effective monitoring of vegetation indices in small, heterogeneous fields.
- –
- To compare the representative fusion techniques, ESTARFM and SSFIT, and to determine the optimal method for fusing S2 data, which provides time-series information, with PS data, which offers high spatial resolution.
- –
- To evaluate the performance of the fusion techniques during periods of high cloud cover.
2. Materials and Methods
2.1. Study Area and Data Used
2.2. Methods
2.2.1. Preprocessing
2.2.2. SSFIT Method
2.2.3. ESTARFM Method
2.2.4. Validation Method
3. Results
3.1. Qualitative Evaluation of Time-Series Fused NDVI Data
3.2. Quantitative Evaluation of Two STF Results Using PS Test Images
4. Discussion
4.1. Applicability of SSFIT and ESTARFM Techniques
4.2. Comparison of Fusion Results in Rice Paddies and Fields
4.3. Influence of Clouds on Fusion Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | Normalized Difference Vegetation Index |
STF | Spatiotemporal Fusion |
SSFIT | Spatiotemporal fusion method to Simultaneously generate Full-length normalized difference vegetation Index Time series |
ESTARFM | Enhanced Spatial and Temporal Adaptive Reflectance Fusion Method |
S2 | Sentinel-2A/B |
PS | PlanetScope |
MNC | Maximum NDVI Composite |
RMSE | Root Mean Square Error |
References
- Korean Statistical Information Service. Available online: https://kosis.kr (accessed on 25 June 2025).
- Rural Development Administration. Available online: https://www.rda.go.kr/board/board.do?mode=view&prgId=day_farmprmninfoEntry&dataNo=100000749546 (accessed on 25 June 2025).
- newsFM. Available online: https://www.newsfm.kr/mobile/article.html?no=7021 (accessed on 25 June 2025).
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 131–151. [Google Scholar] [CrossRef]
- Eun, J.; Kim, S.H.; Kim, T.H. Analysis of the cloud removal effect of Sentinel-2A/B NDVI monthly composite images for rice paddy and high-altitude cabbage fields. Korean J. Remote Sens. 2021, 37, 1545–1557. [Google Scholar] [CrossRef]
- Kim, S.H.; Eun, J. Development of score-based vegetation index composite algorithm for crop monitoring. Korean J. Remote Sens. 2022, 38, 1343–1356. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, P.; Feng, X.; Li, H.; Zhang, W.; Lin, J. Effective compositing method to produce cloud-free AVHRR image. IEEE Geosci. Remote Sens. Lett. 2014, 11, 328–332. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Fraser, A.D.; Masson, R.A.; Michael, K.J. A method for compositing polar MODIS satellite images to remove cloud cover for landfast sea-ice detection. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3272–3282. [Google Scholar] [CrossRef]
- Gao, F.; Morisette, J.T.; Wolfe, R.E.; Ederer, G.; Pedelty, J.; Masuoka, E.; Myneni, R.; Tan, B.; Nightingale, J. An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geosci. Remote Sens. Lett. 2008, 5, 60–64. [Google Scholar] [CrossRef]
- Belda, S.; Pipia, L.; Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Amin, E.; De Grave, C.; Verrelst, J. DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw. 2020, 127, 104666. [Google Scholar] [CrossRef]
- Kim, S.H.; Eun, J.; Kim, T.H. Development of spatio-temporal gap-filling technique for NDVI images. Korean J. Remote Sens. 2024, 40, 957–963. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Chen, X.; Sun, Z.; Stueve, K.; Yuan, F. In-season prediction of corn grain yield through PlanetScope and Sentinel-2 images. Agronomy 2022, 12, 3176. [Google Scholar] [CrossRef]
- Eun, J.; Kim, S.H.; Min, J.E. Comparison of NDVI in rice paddy according to the resolution of optical satellite images. Korean J. Remote Sens. 2023, 39, 1321–1330. [Google Scholar] [CrossRef]
- Planet Pulse. Available online: https://www.planet.com/pulse/next-generation-agriculture-monitoring-at-scale-with-planets-crop-biomass (accessed on 2 July 2025).
- Swain, K.C.; Singha, C.; Pradhan, B. Estimating total rice biomass and crop yield at field scale using PlanetScope imagery through hybrid machine learning models. Earth Syst. Environ. 2024, 8, 1713–1731. [Google Scholar] [CrossRef]
- Kumhálová, J.; Matějková, S. Yield variability prediction by remote sensing sensors with different spatial resolution. Int. Agrophys. 2017, 31, 195–202. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A technical review of Planet smallsat data: Practical considerations for processing and using PlanetScope imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Planet Labs. Available online: https://assets.planet.com/docs/scene_level_normalization_of_planet_dove_imagery.pdf (accessed on 2 July 2025).
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Shen, M.; Chen, J.; Cao, R.; Qiu, Y.; Xu, Y.N. Effectiveness of spatiotemporal data fusion in fine-scale land surface phenology monitoring: A simulation study. J. Remote Sens. 2024, 4, 0118. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Chen, J.; Chen, X. Spatiotemporal fusion method to simultaneously generate full-length normalized difference vegetation index time series (SSFIT). Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102333. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex and heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D. A robust and adaptive spatial-spectral fusion model for PlanetScope and Sentinel-2 imagery. Geosci. Remote Sens. 2022, 59, 520–546. [Google Scholar] [CrossRef]
- Sarker, S.; Sagan, V.; Bhadra, S.; Fritschi, F.B. Spectral enhancement of PlanetScope using Sentinel-2 images to estimate soybean yield and seed composition. Sci. Rep. 2024, 14, 15063. [Google Scholar] [CrossRef] [PubMed]
- Gašparović, M.; Medak, D.; Pilaš, I.; Jurjević, L.; Balenović, I. Fusion of Sentinel-a and PlanetScope imagery for vegetation detection and monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-1, 155–160. [Google Scholar] [CrossRef]
- Kim, Y.; Park, N.W. Comparison of spatio-temporal fusion models of multiple satellite images for vegetation monitoring. Korean J. Remote Sens. 2019, 35, 1209–1219. [Google Scholar] [CrossRef]
Site | Rice Paddy | Highland Cabbage Field |
---|---|---|
Location (Area) | 37.03071° N, 126.50696° E (1042.5 ha) | 37.21837° N, 128.96659° E (102.6 ha) |
Growing period of crops | The fields are filled with water in April, rice seedlings are planted in May, and harvested in October | Sowing takes place from May to June, and harvesting takes place from August to September. The sowing period, growing status, and harvesting period vary depending on the plot |
S2 L2A (10 m, 5 days) | May 13, 2019~October 25, 2019 (24 scenes) May 12, 2020~October 24, 2020 (26 scenes) May 12, 2021~October 24 2021 (25 scenes) | Jun 4, 2019~September 7, 2019 (11 scenes) Jun 8, 2020~September 6, 2020 (8 scenes) Jun 13, 2021~September 21, 2021 (10 scenes) |
PS Dove L3B (3 m, occasional) | May 11, 2019~October 9, 2019 (13 scenes) April 29, 2020~October 6, 2020 (21 scenes) May 12, 2021~August 15, 2021 (14 scenes) | Jun 4, 2019~September 7, 2019 (14 scenes) Jun 8, 2020~September 6, 2020 (10 scenes) Jun 13, 2021~September 21, 2021 (9 scenes) |
Date | SSFIT | ESTARFM | |||
---|---|---|---|---|---|
RMSE | Correlation | RMSE | Correlation | ||
2019 | May 24 Jun 11 Jul 9 Sep 13 Sep 18 | 0.068 0.096 0.151 0.139 0.110 | 0.860 0.840 0.851 0.828 0.801 | 0.073 0.078 0.158 0.140 0.102 | 0.849 0.837 0.833 0.793 0.693 |
2020 | Jun 9 Jun 22 Sep 20 Oct 6 | 0.024 0.125 0.023 0.046 | 0.994 0.893 0.971 0.914 | 0.029 0.107 0.045 0.062 | 0.979 0.909 0.963 0.932 |
2021 | Jul 16 | 0.057 | 0.951 | 0.131 | 0.723 |
Date | SSFIT | ESTARFM | |||
---|---|---|---|---|---|
RMSE | Correlation | RMSE | Correlation | ||
2019 | Jun 25 Jul 2 | 0.073 0.056 | 0.969 0.988 | 0.069 0.089 | 0.966 0.944 |
2020 | Jun 16 Aug 20 | 0.084 0.049 | 0.883 0.971 | 0.134 0.064 | 0.874 0.943 |
2021 | Jun 18 Jul 28 | 0.104 0.004 | 0.980 0.999 | 0.048 0.032 | 0.989 0.984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Eun, J.; Baek, I.; Kim, T.-H. Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields. Sensors 2025, 25, 5183. https://doi.org/10.3390/s25165183
Kim S-H, Eun J, Baek I, Kim T-H. Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields. Sensors. 2025; 25(16):5183. https://doi.org/10.3390/s25165183
Chicago/Turabian StyleKim, Sun-Hwa, Jeong Eun, Inkwon Baek, and Tae-Ho Kim. 2025. "Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields" Sensors 25, no. 16: 5183. https://doi.org/10.3390/s25165183
APA StyleKim, S.-H., Eun, J., Baek, I., & Kim, T.-H. (2025). Generation of High-Resolution Time-Series NDVI Images for Monitoring Heterogeneous Crop Fields. Sensors, 25(16), 5183. https://doi.org/10.3390/s25165183