Pain State Classification of Stiff Knee Joint Using Electromyogram for Robot-Based Post-Fracture Rehabilitation Training
Abstract
1. Introduction
2. Method
2.1. Experiment Design
2.1.1. Experiment I
2.1.2. Experiment II
2.2. Data Processing
2.2.1. Preprocessing
2.2.2. Extraction of EMG Features
2.2.3. Estimation of maxAP via Pain State Classification
3. Result
3.1. EMG Features
3.2. Pain State Classification for maxAP Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziran, N.; Soles, G.L.S.; Matta, J.M. Outcomes after surgical treatment of acetabular fractures: A review. Patient Saf. Surg. 2019, 13, 16. [Google Scholar] [CrossRef]
- Furlow, B. Bone fracture fixation. Radiol. Technol. 2000, 71, 543–558. [Google Scholar]
- Bretherton, C.A.-O.; Al-Saadawi, A.A.-O.; Thomson, F.; Sandhu, H.A.-O.; Baird, J.A.-O.; Griffin, X.A.-O.; Bretherton, C.; Al-Saadawi, A.; Thomson, F.; Sandhu, H.; et al. Effectiveness of behavior change in rehabilitation interventions to improve functional recovery after lower limb fracture: A systematic review. Musculoskelet. Surg. 2024, 108, 417–429. [Google Scholar] [CrossRef]
- Chen, B.; Ye, Z.; Wu, J.; Wang, G.; Yu, T. The effect of early weight-bearing and later weight-bearing rehabilitation interventions on outcomes after ankle fracture surgery: A systematic review and meta-analysis of randomised controlled trials. J. Foot Ankle Res. 2024, 17, e12011. [Google Scholar] [CrossRef]
- Gashaw, M.; Aragaw, F.M.; Zemed, A.; Endalew, M.; Tsega, N.T.; Asratie, M.H.; Belay, D.G. Distal and/or Proximal Joint Stiffness Among Post-Fracture Patients Treated in University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia. Orthop. Res. Rev. 2022, 14, 157–167. [Google Scholar] [CrossRef]
- Singaram, S.; Naidoo, M. The physical, psychological and social impact of long bone fractures on adults: A review. Afr. J. Prim. Health Care Fam. Med. 2019, 11, e1–e9. [Google Scholar] [CrossRef]
- Peeters, C.M.M.; Visser, E.; Ree, C.L.P.V.d.; Gosens, T.; Oudsten, B.L.D.; Vries, J.D. Quality of life after hip fracture in the elderly: A systematic literature review. Inj. Int. J. Care Inj. 2016, 47, 1369–1382. [Google Scholar] [CrossRef]
- Alvarez-Perez, M.G.; Garcia-Murillo, M.A.; Cervantes-Sánchez, J.J. Robot-assisted ankle rehabilitation: A review. Disabil. Rehabil-Assi 2020, 15, 394–408. [Google Scholar] [CrossRef]
- Chien, W.-T.; Chong, Y.-Y.; Tse, M.-K.; Chien, C.-W.; Cheng, H.-Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef] [PubMed]
- Watabe, T.; Muramatsu, R.; Sengoku, T.; Sakurai, G.; Yoshida, S.; Kubota, M.; Asano, Y.; Taniguchi, Y. Effects of Supplemental Robot-Assisted Knee Flexion Exercise After Total Knee Arthroplasty: A Randomized Controlled Clinical Study. J. Musculoskelet. Neuronal Interact. 2025, 25, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Prentice, W. Therapeutic Modalities in Rehabilitation; McGraw Hill/Medical: Columbus, OH, USA, 2011. [Google Scholar]
- Delgado, D.A.; Lambert, B.S.; Boutris, N.; McCulloch, P.C.; Robbins, A.B.; Moreno, M.R.; Harris, J.D. Validation of Digital Visual Analog Scale Pain Scoring with a Traditional Paper-based Visual Analog Scale in Adults. J. Am. Acad. Orthop. Surgeons. Glob. Res. Rev. 2018, 2, e088. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Xiao, P.; Hung, Y.S.; Iannetti, G.D.; Zhang, Z.G.; Hu, L. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. NeuroImage 2013, 81, 283–293. [Google Scholar] [CrossRef]
- Marquand, A.; Howard, M.; Brammer, M.; Chu, C.; Coen, S.; Mourão-Miranda, J. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage 2010, 49, 2178–2189. [Google Scholar] [CrossRef]
- Brown, J.E.; Chatterjee, N.; Younger, J.; Mackey, S. Towards a Physiology-Based Measure of Pain: Patterns of Human Brain Activity Distinguish Painful from Non-Painful Thermal Stimulation. PLoS ONE 2011, 6, e24124. [Google Scholar] [CrossRef]
- Loggia, M.L.; Juneau, M.; Bushnell, C.M. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain 2011, 152, 592–598. [Google Scholar] [CrossRef]
- Chapman, C.R.; Oka, S.; Bradshaw, D.H.; Jacobson, R.C.; Donaldson, G.W. Phasic pupil dilation response to noxious stimulation in normal volunteers: Relationship to brain evoked potentials and pain report. Psychophysiology 1999, 36, 44–52. [Google Scholar] [CrossRef]
- Geuter, S.; Gamer, M.; Onat, S.; Büchel, C. Parametric trial-by-trial prediction of pain by easily available physiological measures. Pain 2014, 155, 994–1001. [Google Scholar] [CrossRef]
- Svensson, P.; Wang, K.; Sessle, B.J.; Arendt-Nielsen, L. Associations between pain and neuromuscular activity in the human jaw and neck muscles. Pain 2004, 109, 225–232. [Google Scholar] [CrossRef]
- Magit, D.; Wolff, A.; Sutton, K.; Medvecky, M.J. Arthrofibrosis of the knee. J. Am. Acad. Orthop. Surg. 2007, 15, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Li, M.; Yang, Z.; He, D.; Zheng, Y. A Multimodal Knee Exoskeleton for Fracture Rehabilitation. In Proceedings of the 2024 17th International Convention on Rehabilitation Engineering and Assistive Technology (i-CREATe), Shanghai, China, 23–26 August 2024. [Google Scholar]
- Cleary, J.; Coombes, B.K.; Hodges, P.; Tucker, K. Motor Unit Recruitment is Altered When Acute Experimental Pain is Induced at a Site Distant to the Contracting Muscle. Neuroscience 2022, 496, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Ducas, J.; Hamel, A.; Vadez, G.; Descarreaux, M.; Abboud, J. Individuals with chronic low back pain show impaired adaptations of lumbar extensor muscle reflex amplitude during unexpected perturbations. Eur. J. Appl. Physiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, K.B.; Butler, R.J.; Duckworth, A.; Halaby, T.; Lannan, K.; Phifer, C.; DeLeal, C.; Underwood, F.B. Experimentally induced pain alters the EMG activity of the lumbar multifidus in asymptomatic subjects. Man. Ther. 2012, 17, 236–240. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Pesquet, J.-C.; Krim, H.; Carfantan, H. Time-invariant orthonormal wavelet representations. Signal Process. IEEE Trans. 1996, 44, 1964–1970. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.; Wang, J. Is Using Threshold-Crossing Method and Single Type of Features Sufficient to Achieve Realistic Application of Seizure Prediction? Clin. EEG Neurosci. 2016, 47, 305–316. [Google Scholar] [CrossRef]
- Park, Y.; Luo, L.; Parhi, K.K.; Netoff, T. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 2011, 52, 1761–1770. [Google Scholar] [CrossRef]
- Khan, S.M.; Khan, A.A.; Farooq, O. Pattern recognition of EMG signals for low level grip force classification. Biomed. Phys. Eng. Express 2021, 7, 065012. [Google Scholar] [CrossRef]
- Cheng, S.; Gao, J.; Qi, H. Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer. Comput. Model. Eng. Sci. 2024, 141, 871–892. [Google Scholar] [CrossRef]
- Hung, L.Y.; Maracle, E.; Srbely, J.Z.; Brown, S.H.M. Acute experimentally induced neck pain does not affect fatigability of the peripheral biceps brachii muscle. Mot. Control 2014, 18, 395–404. [Google Scholar] [CrossRef]
- Diederichsen, L.P.; Winther, A.; Dyhre-Poulsen, P.; Krogsgaard, M.R.; Nørregaard, J. The influence of experimentally induced pain on shoulder muscle activity. Exp. Brain Res. 2009, 194, 329–337. [Google Scholar] [CrossRef]
- Ibrahim, I.K.; Berger, W.; Trippel, M.; Dietz, V. Stretch-induced electromyographic activity and torque in spastic elbow muscles: Differential modulation of reflex activity in passive and active motor tasks. Brain 1993, 116, 971–989. [Google Scholar] [CrossRef] [PubMed]
- Clancy, E.A.; Hogan, N. Theoretic and experimental comparison of root-mean-square and mean-absolute-value electromyogram amplitude detectors. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ (Cat. No.97CH36136), Chicago, IL, USA, 30 October–2 November 1997; pp. 1267–1270. [Google Scholar]
- Li, Y.; Xu, G.; Zhang, K.; Wang, G.; Zheng, Y. Real-time EMG Decomposition across Neural Excitation Levels using Dual Self-Attention Residual Network. IEEE Trans. Instrum. Meas. 2025, 74, 4004912. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, X. Adaptive Real-time Decomposition of Electromyogram During Sustained Muscle Activation: A Simulation Study. IEEE Trans. Biomed. Eng. 2022, 69, 645–653. [Google Scholar] [CrossRef] [PubMed]
Patient | Age | Gender | Weight (Kg)/Height (cm) | Fracture Site | Post-Operation (Week) |
---|---|---|---|---|---|
Experiment I | |||||
1 | 50 | M | 64/173 | Meniscus | 11 |
2 | 61 | F | 62/170 | patella | 35 |
3 | 30 | M | 66/175 | patella | 6 |
4 | 24 | F | 61/168 | tibia | 12 |
5 | 17 | F | 62/170 | patella | 8 |
6 | 41 | M | 67/175 | medial femoral condyle | 8 |
7 | 62 | F | 62/160 | patella | 7 |
8 | 16 | F | 54/160 | patella | 8 |
9 | 40 | F | 59/160 | patella | 13 |
10 | 35 | M | 85/180 | tibia | 1 |
11 | 52 | F | 60/160 | patella | 12 |
12 | 32 | F | 55/165 | tibia | 12 |
Experiment II | |||||
1 | 32 | F | 110/160 | meniscus | 1 |
2 | 47 | F | 130/170 | patella | 9 |
3 | 35 | M | 65/175 | tibia | 7 |
4 | 61 | F | 58/163 | patella | 12 |
5 | 51 | M | 75/175 | tibia | 3 |
6 | 51 | F | 60/165 | tibia | 8 |
7 | 50 | F | 55/170 | patella | 12 |
Subject | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
1 | 92.18% | 89.54% | 95.57% | 92.45% |
2 | 86.59% | 84.61% | 93.09% | 88.64% |
3 | 86.09% | 78.76% | 95.33% | 86.25% |
4 | 80.32% | 70.15% | 99.15% | 82.16% |
5 | 93.77% | 87.66% | 94.95% | 91.15% |
6 | 86.07% | 69.25% | 94.24% | 79.83% |
7 | 90.28% | 80.26% | 88.46% | 84.16% |
Mean ± std | 87.90% ± 4.55% | 80.03% ± 8.01% | 94.39% ± 3.21% | 86.38% ± 4.66% |
Subject | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
1 | 91.43% | 88.36% | 95.47% | 91.78% |
2 | 89.58% | 90.53% | 90.98% | 90.75% |
3 | 87.40% | 84.80% | 88.30% | 86.51% |
4 | 80.96% | 73.81% | 90.46% | 81.29% |
5 | 94.97% | 91.21% | 94.20% | 92.68% |
6 | 87.99% | 76.88% | 84.34% | 80.44% |
7 | 91.38% | 85.84% | 84.36% | 85.09% |
Mean ± std | 89.10% ± 4.39% | 84.49% ± 6.71% | 89.73% ± 4.38% | 86.94% ± 4.98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; He, D.; He, Y.; Kong, X.; Fan, X.; Li, M.; Xu, G.; Yin, J. Pain State Classification of Stiff Knee Joint Using Electromyogram for Robot-Based Post-Fracture Rehabilitation Training. Sensors 2025, 25, 5142. https://doi.org/10.3390/s25165142
Zheng Y, He D, He Y, Kong X, Fan X, Li M, Xu G, Yin J. Pain State Classification of Stiff Knee Joint Using Electromyogram for Robot-Based Post-Fracture Rehabilitation Training. Sensors. 2025; 25(16):5142. https://doi.org/10.3390/s25165142
Chicago/Turabian StyleZheng, Yang, Dimao He, Yuan He, Xiangrui Kong, Xiaochen Fan, Min Li, Guanghua Xu, and Jichao Yin. 2025. "Pain State Classification of Stiff Knee Joint Using Electromyogram for Robot-Based Post-Fracture Rehabilitation Training" Sensors 25, no. 16: 5142. https://doi.org/10.3390/s25165142
APA StyleZheng, Y., He, D., He, Y., Kong, X., Fan, X., Li, M., Xu, G., & Yin, J. (2025). Pain State Classification of Stiff Knee Joint Using Electromyogram for Robot-Based Post-Fracture Rehabilitation Training. Sensors, 25(16), 5142. https://doi.org/10.3390/s25165142