The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy
Abstract
1. Introduction
2. The Recent Research in UWB-Based Localization
3. UWB Equipment Used in Experiments
4. Methodology and the Experimental Setup
5. Measurement Results and Discussion
5.1. Measurement Results
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AoA | Angle of arrival |
DS-TWR | Double-sided two way-ranging |
GNSS | Global Navigation Satellite System(s) |
LoS | Line of sight |
PDOP | Positional dilution of precision |
RGB | Red, Green, Blue (representing the primary colors of the visible spectrum) |
RMSE | Root Mean Squared Error |
RTK | Real-Time Kinematic |
STDEV | Standard deviation |
TDoA | Time difference of arrival |
ToF | Time of flight |
UAV | Unmanned Aerial Vehicle |
UWB | Ultra-Wideband |
References
- Elkhrachy, I. Accuracy Assessment of Low-Cost Unmanned Aerial Vehicle (UAV) Photogrammetry. Alex. Eng. J. 2021, 60, 5579–5590. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Kim, H.; Hyun, C.-U.; Park, H.-D.; Cha, J. Image Mapping Accuracy Evaluation Using UAV with Standalone, Differential (RTK), and PPP GNSS Positioning Techniques in an Abandoned Mine Site. Sensors 2023, 23, 5858. [Google Scholar] [CrossRef]
- Kramarić, L.; Jelušić, N.; Radišić, T.; Muštra, M. A Comprehensive Survey on Short-Distance Localization of UAVs. Drones 2025, 9, 188. [Google Scholar] [CrossRef]
- Oppermann, I.; Hämäläinen, M.; Iinatti, J. UWB: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 978-0-470-86917-8. [Google Scholar]
- Foerster, J.R. The Effects of Multipath Interference on the Performance of UWB Systems in an Indoor Wireless Channel. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No. 01CH37202), Rhodes, Greece, 6–9 May 2001; Volume 2, pp. 1176–1180. [Google Scholar]
- Joon-Yong, L.; Scholtz, R.A. Ranging in a Dense Multipath Environment Using an UWB Radio Link. IEEE J. Select. Areas Commun. 2002, 20, 1677–1683. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Lee, B. A Study on Anchor Placement and 3D Positioning Algorithm for UWB Application in Small Sites. KSCE J. Civ. Eng. 2024, 28, 4575–4587. [Google Scholar] [CrossRef]
- Monica, S.; Ferrari, G. UWB-Based Localization in Large Indoor Scenarios: Optimized Placement of Anchor Nodes. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 987–999. [Google Scholar] [CrossRef]
- Pan, H.; Qi, X.; Liu, M.; Liu, L. Map-Aided and UWB-Based Anchor Placement Method in Indoor Localization. Neural Comput. Appl. 2021, 33, 11845–11859. [Google Scholar] [CrossRef]
- Albaidhani, A.; Morell, A.; Vicario, J.L. Anchor Selection for UWB Indoor Positioning. Trans. Emerg. Tel. Tech. 2019, 30, e3598. [Google Scholar] [CrossRef]
- Pan, H.; Qi, X.; Liu, M.; Liu, L. An UWB-Based Indoor Coplanar Localization and Anchor Placement Optimization Method. Neural Comput. Appl. 2022, 34, 16845–16860. [Google Scholar] [CrossRef]
- Cerro, G.; Ferrigno, L.; Laracca, M.; Miele, G.; Milano, F.; Pingerna, V. UWB-Based Indoor Localization: How to Optimally Design the Operating Setup? IEEE Trans. Instrum. Meas. 2022, 71, 9509012. [Google Scholar] [CrossRef]
- Jimenez Ruiz, A.R.; Seco Granja, F. Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2106–2117. [Google Scholar] [CrossRef]
- Ferrigno, L.; Miele, G.; Milano, F.; Pingerna, V.; Cerro, G.; Laracca, M. A UWB-Based Localization System: Analysis of the Effect of Anchor Positions and Robustness Enhancement in Indoor Environments. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Chen, Y.-Y.; Huang, S.-P.; Wu, T.-W.; Tsai, W.-T.; Liou, C.-Y.; Mao, S.-G. UWB System for Indoor Positioning and Tracking with Arbitrary Target Orientation, Optimal Anchor Location, and Adaptive NLOS Mitigation. IEEE Trans. Veh. Technol. 2020, 69, 9304–9314. [Google Scholar] [CrossRef]
- Pan, H.; Qi, X.; Liu, M.; Liu, L. Indoor Scenario-Based UWB Anchor Placement Optimization Method for Indoor Localization. Expert. Syst. Appl. 2022, 205, 117723. [Google Scholar] [CrossRef]
- Zhao, W.; Goudar, A.; Schoellig, A.P. Finding the Right Place: Sensor Placement for UWB Time Difference of Arrival Localization in Cluttered Indoor Environments. IEEE Robot. Autom. Lett. 2022, 7, 6075–6082. [Google Scholar] [CrossRef]
- Silva, B.; Pang, Z.; Akerberg, J.; Neander, J.; Hancke, G. Experimental Study of UWB-Based High Precision Localization for Industrial Applications. In Proceedings of the 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris, France, 1–3 September 2014; pp. 280–285. [Google Scholar]
- Schroeer, G. A Real-Time UWB Multi-Channel Indoor Positioning System for Industrial Scenarios. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018; pp. 1–5. [Google Scholar]
- Delamare, M.; Boutteau, R.; Savatier, X.; Iriart, N. Static and Dynamic Evaluation of an UWB Localization System for Industrial Applications. Sci. 2020, 2, 23. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Yang, D.; Liu, F.; Wen, Z. UWB Positioning Algorithm and Accuracy Evaluation for Different Indoor Scenes. Int. J. Image Data Fusion 2021, 12, 203–225. [Google Scholar] [CrossRef]
- Barbieri, L.; Brambilla, M.; Trabattoni, A.; Mervic, S.; Nicoli, M. UWB Localization in a Smart Factory: Augmentation Methods and Experimental Assessment. IEEE Trans. Instrum. Meas. 2021, 70, 2508218. [Google Scholar] [CrossRef]
- Schjørring, A.; Cretu-Sircu, A.L.; Rodriguez, I.; Cederholm, P.; Berardinelli, G.; Mogensen, P. Performance Evaluation of a UWB Positioning System Applied to Static and Mobile Use Cases in Industrial Scenarios. Electronics 2022, 11, 3294. [Google Scholar] [CrossRef]
- Martalo, M.; Perri, S.; Verdano, G.; De Mola, F.; Monica, F.; Ferrari, G. Improved UWB TDoA-Based Positioning Using a Single Hotspot for Industrial IoT Applications. IEEE Trans. Ind. Inf. 2022, 18, 3915–3925. [Google Scholar] [CrossRef]
- Jia, M.; Khattak, S.B.A.; Guo, Q.; Gu, X.; Lin, Y. Access Point Optimization for Reliable Indoor Localization Systems. IEEE Trans. Rel. 2020, 69, 1424–1436. [Google Scholar] [CrossRef]
- Nguyen, T.-M.; Nguyen, T.H.; Cao, M.; Qiu, Z.; Xie, L. Integrated UWB-Vision Approach for Autonomous Docking of UAVs in GPS-Denied Environments. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9603–9609. [Google Scholar]
- Miranda, V.R.F.; Rezende, A.M.C.; Rocha, T.L.; Azpúrua, H.; Pimenta, L.C.A.; Freitas, G.M. Autonomous Navigation System for a Delivery Drone. J. Control Autom. Electr. Syst. 2022, 33, 141–155. [Google Scholar] [CrossRef]
- Guo, K.; Li, X.; Xie, L. Ultra-Wideband and Odometry-Based Cooperative Relative Localization With Application to Multi-UAV Formation Control. IEEE Trans. Cybern. 2020, 50, 2590–2603. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Yu, J.; Lin, Z.; Bai, J.; Zhang, B.; Shen, Y.; Wang, J.; Wang, Y. MD-RadioMap: Multi-Drone Radio Map Building via Single-Anchor Ultra-Wideband Localization Network. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–6. [Google Scholar]
- Gerwen, J.V.-V.; Geebelen, K.; Wan, J.; Joseph, W.; Hoebeke, J.; De Poorter, E. Indoor Drone Positioning: Accuracy and Cost Trade-Off for Sensor Fusion. IEEE Trans. Veh. Technol. 2022, 71, 961–974. [Google Scholar] [CrossRef]
- Moon, S.; Youn, W. A Novel Movable UWB Localization System Using UAVs. IEEE Access 2022, 10, 41303–41312. [Google Scholar] [CrossRef]
- Si, M.; Wang, Y.; Zhou, N.; Seow, C.; Siljak, H. A Hybrid Indoor Altimetry Based on Barometer and UWB. Sensors 2023, 23, 4180. [Google Scholar] [CrossRef]
- Yang, F.; Liu, D.; Gong, X.; Chen, R.; Hyyppä, J. 3D Indoor Area Recognition for Personnel Security Using Integrated UWB and Barometer Approach. Sci. Rep. 2024, 14, 20846. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, E.; Wang, Y.; Yu, T.; Jia, S.; Xu, S.; Qu, P. A Low-Cost UAV Swarm Relative Positioning Architecture Based on BDS/Barometer/UWB. IEEE Sensors J. 2024, 24, 39659–39668. [Google Scholar] [CrossRef]
- Decawave Ltd. DWM1000 Data Sheet 2016; Decawave Ltd.: Dublin, Ireland, 2016. [Google Scholar]
- Qorvo, US, Inc. Sources of Error in DW1000 Based Two-Way Ranging (TWR) Schemes 2024; Qorvo, US, Inc.: Greensboro, NC, USA, 2024. [Google Scholar]
- Bukvić, L.; Kramarić, L.; Muštra, M.; Jelušić, N. Ultra-Wideband Localization with Time-Based Measurement Techniques. In Proceedings of the 2023 International Symposium ELMAR, Zadar, Croatia, 11–13 September 2023; pp. 151–154. [Google Scholar]
- Asaad, S.M.; Maghdid, H.S. Novel Integrated Matching Algorithm Using a Deep Learning Algorithm for Wi-Fi Fingerprint-Positioning Technique in the Indoors-IoT Era. PeerJ Comput. Sci. 2023, 9, e1406. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, C.; Huai, J.; Li, Y.; Chen, L.; Chen, R. Bluetooth Localization Technology: Principles, Applications, and Future Trends. IEEE Internet Things J. 2022, 9, 23506–23524. [Google Scholar] [CrossRef]
Feature | Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 |
---|---|---|---|---|
Number of anchors | 4 | 5 | 6 | 6 |
Layout of anchors | Same horizontal plane at 40 cm height, 2D rectangle covering the area of 4 m × 3 m | Same as Configuration 1, with one elevated central anchor | Same as Configuration 1, with two elevated central anchors | Three anchors at 40 cm, and three anchors elevated to 2 m |
Vertical diversity | None | Medium | High | High |
Additional anchor(s) | None | One at (1.5, 2, 2) m | Two at (1, 1, 2) m and (1, 3, 2) m | Two symmetrical triangles |
Purpose | Baseline setup, minimal number of anchors required for (2)3D trilateration | Test on how a minimal 3D geometry affects vertical accuracy | Improving 3D trilateration by adding an additional elevated anchor | Maximizing spatial coverage and minimizing geometric distortion |
Expected effects | Poor z-axis accuracy due to coplanar geometry (high VDOP) | Improvement in z-axis accuracy, similar horizontal accuracy to Configuration 1 | Further improvement in z-axis accuracy and reduced RMSE overall | Best overall accuracy |
RMSE x, [cm] | RMSE y, [cm] | RMSE z, [cm] | RMSE z Altimeter, [cm] | STDEV x, [cm] | STDEV y, [cm] | STDEV z, [cm] | STDEV z Altimeter, [cm] | |
---|---|---|---|---|---|---|---|---|
Conf. 1 | 17.50 | 17.13 | 116.04 | 0.63 | 2.82 | 2.06 | 17.35 | 0.19 |
Conf. 2 | 13.20 | 13.89 | 13.67 | 0.75 | 3.05 | 2.22 | 3.53 | 0.14 |
Conf. 3 | 16.81 | 13.19 | 12.86 | 1.04 | 4.41 | 3.70 | 2.82 | 0.26 |
Conf. 4 | 12.23 | 15.04 | 10.64 | 0.65 | 1.06 | 1.06 | 0.61 | 0.25 |
Configuration 1 | Configuration 2 | Configuration 3 | Configuration 4 | |
---|---|---|---|---|
P1 H1 | 10.9248 | 1.7457 | 1.3513 | 1.4204 |
P1 H2 | 2.2062 | 1.7119 | 1.3910 | 1.4594 |
P1 H3 | 1.6395 | 1.5346 | 1.3943 | 1.3883 |
P2 H1 | 13.9789 | 1.4132 | 1.3912 | 1.3339 |
P2 H2 | 2.5895 | 1.3773 | 1.4840 | 1.4128 |
P2 H3 | 1.7396 | 1.3443 | 1.5185 | 1.4027 |
P3 H1 | 11.6819 | 2.0236 | 2.0297 | 1.3601 |
P3 H2 | 2.2947 | 1.8850 | 1.9123 | 1.4272 |
P3 H3 | 1.6581 | 1.5703 | 1.5481 | 1.5064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramarić, L.; Muštra, M.; Radišić, T. The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy. Sensors 2025, 25, 5115. https://doi.org/10.3390/s25165115
Kramarić L, Muštra M, Radišić T. The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy. Sensors. 2025; 25(16):5115. https://doi.org/10.3390/s25165115
Chicago/Turabian StyleKramarić, Luka, Mario Muštra, and Tomislav Radišić. 2025. "The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy" Sensors 25, no. 16: 5115. https://doi.org/10.3390/s25165115
APA StyleKramarić, L., Muštra, M., & Radišić, T. (2025). The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy. Sensors, 25(16), 5115. https://doi.org/10.3390/s25165115