Multi-UAV-Assisted Task Offloading and Trajectory Optimization for Edge Computing via NOMA
Abstract
1. Introduction
2. Related Works
3. Proposed Approach
3.1. System Model
3.2. Problem Statement
3.3. Proposed TD3-Based Optimization Approach
Algorithm 1 Optimal Task Offloading Decision Algorithm Based on TD3 | |
Input: number of iterations, learning rate for the Actor network, learning rate for the | |
Critic network, discount factor, and soft update coefficient | |
Output: offloading decisions, UAV trajectory, and minimum delay | |
1 | Randomly initialize parameters , for the Critic networks; randomly initialize parameter for the Actor network |
2 | Initialize target networks: , , |
3 | Initialize the experience replay buffer: R |
4 | for episode to Max_Step do |
5 | Reset environment and observe initial state |
6 | for time step to T do |
7 | Select action , represents Gaussian noise |
8 | Execute , the reward and the next state are obtained |
9 | Store its data tuple into the experience buffer R |
10 | if R is full, update the experience buffer |
11 | Randomly sample a batch of N values from the multidimensional array , from |
12 | Update the Critic network by minimizing the target loss using Equation (33) |
13 | if then |
14 | Update the Actor online network using Equation (34) |
15 | Update the weights of the target network according to Equation (35) |
16 | end if |
17 | end for |
18 | end for |
4. Performance Evaluation
4.1. Simulation Setup
4.1.1. Simulation Metrics
4.1.2. Simulation Scenarios
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Qamar, F.; Liaqat, M.; Hindia, M.N.; Ariffin, K.A.Z. Towards efficient 6G IoT networks: A perspective on resource optimization strategies, challenges, and future directions. IEEE Access 2024, 12, 76606–76633. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, Z.; Wang, Y.; Xiang, Z.; Gao, H. Periodic collaboration and real-time dispatch using an actor–critic framework for uav movement in mobile edge computing. IEEE Internet Things J. 2024, 11, 21215–21226. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, L.; Jiang, W.; Chan, C.A.; Gygax, A.F.; Nirmalathas, A. Energy consumption modeling and optimization of UAV-assisted MEC networks using deep reinforcement learning. IEEE Sensors J. 2024, 24, 13629–13639. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, M.; Bi, J.; Shi, S.; Yang, J.; Zhang, J.; Zhou, M.; Buyya, R. Cost-efficient Task Offloading in Mobile Edge Computing with Layered Unmanned Aerial Vehicles. IEEE Internet Things J. 2024, 11, 30496–30509. [Google Scholar] [CrossRef]
- Vardakis, C.; Dimolitsas, I.; Spatharakis, D.; Dechouniotis, D.; Zafeiropoulos, A.; Papavassiliou, S. A Petri Net-based framework for modeling and simulation of resource scheduling policies in Edge Cloud Continuum. Simul. Model. Pract. Theory 2025, 141, 103098. [Google Scholar] [CrossRef]
- Yu, C.; Yong, Y.; Liu, Y.; Cheng, J.; Tong, Q. A Multi-Objective Evolutionary Approach: Task Offloading and Resource Allocation Using Enhanced Decomposition-Based Algorithm in Mobile Edge Computing. IEEE Access 2024, 12, 123640–123655. [Google Scholar] [CrossRef]
- Moreschini, S.; Pecorelli, F.; Li, X.; Naz, S.; Hästbacka, D.; Taibi, D. Cloud continuum: The definition. IEEE Access 2022, 10, 131876–131886. [Google Scholar] [CrossRef]
- Hossain, M.A.; Liu, W.; Ansari, N. Computation-efficient offloading and power control for MEC in IoT networks by meta-reinforcement learning. IEEE Internet Things J. 2024, 11, 16722–16730. [Google Scholar] [CrossRef]
- Javanmardi, S.; Nascita, A.; Pescapè, A.; Merlino, G.; Scarpa, M. An integration perspective of security, privacy, and resource efficiency in IoT-Fog networks: A comprehensive survey. Comput. Netw. 2025, 270, 111470. [Google Scholar] [CrossRef]
- Yu, Z.; Fan, G. Joint differential evolution and successive convex approximation in UAV-enabled mobile edge computing. IEEE Access 2022, 10, 57413–57426. [Google Scholar] [CrossRef]
- Tian, Y.; Khan, A.; Ahmad, S.; Mohsan, S.A.; Karim, F.K.; Hayat, B.; Mostafa, S.M. An Optimized Deep Learning Framework for Energy-Efficient Resource Allocation in UAV-Assisted Wireless Networks. IEEE Access 2025, 13, 40632–40648. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Liu, Y.; Yang, D.; Xiao, L.; Tao, M. 3D multi-uav computing networks: Computation capacity and energy consumption tradeoff. IEEE Trans. Veh. Technol. 2024, 73, 10627–10641. [Google Scholar] [CrossRef]
- Lu, H.; He, X.; Du, M.; Ruan, X.; Sun, Y.; Wang, K. Edge QoE: Computation offloading with deep reinforcement learning for Internet of Things. IEEE Internet Things J. 2020, 7, 9255–9265. [Google Scholar] [CrossRef]
- Cheng, K.; Fang, X.; Wang, X. Energy efficient edge computing and data compression collaboration scheme for UAV-assisted network. IEEE Trans. Veh. Technol. 2023, 72, 16395–16408. [Google Scholar] [CrossRef]
- Zhuang, J.; Han, G.; Xia, Z.; Wang, B.; Li, W.; Wang, D.; Hao, Z.; Cai, R.; Fan, Z. Robust Policy Learning for Multi-UAV Collision Avoidance with Causal Feature Selection. arXiv 2024, arXiv:2407.04056. [Google Scholar] [CrossRef]
- Liu, B.; Wan, Y.; Zhou, F.; Wu, Q.; Hu, R.Q. Resource allocation and trajectory design for MISO UAV-assisted MEC networks. IEEE Trans. Veh. Technol. 2022, 71, 4933–4948. [Google Scholar] [CrossRef]
- Wu, M.; Wu, H.; Lu, W.; Guo, L.; Lee, I.; Jamalipour, A. Security-Aware Designs of Multi-UAV Deployment, Task Offloading and Service Placement in Edge Computing Networks. IEEE Trans. Mob. Comput. 2025. [CrossRef]
- Hao, H.; Xu, C.; Zhang, W.; Yang, S.; Muntean, G.M. Joint task offloading, resource allocation, and trajectory design for multi-uav cooperative edge computing with task priority. IEEE Trans. Mob. Comput. 2024, 23, 8649–8663. [Google Scholar] [CrossRef]
- Sun, G.; He, L.; Sun, Z.; Wu, Q.; Liang, S.; Li, J.; Niyato, D.; Leung, V.C. Joint task offloading and resource allocation in aerial-terrestrial UAV networks with edge and fog computing for post-disaster rescue. IEEE Trans. Mob. Comput. 2024, 23, 8582–8600. [Google Scholar]
- Li, K.; Yan, X.; Han, Y. Multi-mechanism swarm optimization for multi-UAV task assignment and path planning in transmission line inspection under multi-wind field. Appl. Soft Comput. 2024, 150, 111033. [Google Scholar] [CrossRef]
- Dehkordi, M.F.; Jabbari, B. Joint long-term processed task and communication delay optimization in UAV-assisted MEC systems using DQN. In Proceedings of the MILCOM 2024-2024 IEEE Military Communications Conference (MILCOM), Washington, DC, USA, 28 October–1 November 2024; pp. 294–299. [Google Scholar]
- Wang, Y.; Gao, H.; Xiang, Z.; Zhu, Z.; Al-Dulaimi, A. RSMR: A Reliable and Sustainable Multi-Path Routing Scheme for Vehicle Electronics in Edge Computing Networks. IEEE Trans. Consum. Electron. 2024, 71, 2090–2106. [Google Scholar] [CrossRef]
- Zhang, B.; Lin, X.; Zhu, Y.; Tian, J.I.; Zhu, Z. Enhancing multi-UAV reconnaissance and search through double critic DDPG with belief probability maps. IEEE Trans. Intell. Veh. 2024, 9, 3827–3842. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Cao, M.; Feng, C.; Chen, D. Enhancing UAV-assisted vehicle edge computing networks through a digital twin-driven task offloading framework. Wirel. Netw. 2025, 31, 965–981. [Google Scholar] [CrossRef]
- Zhang, G. Energy Consumption Optimization of UAV-Assisted Edge Computing System Based on Deep Learning. J. Electron. Inf. Technol. 2023, 45, 1635–1643. (In Chinese) [Google Scholar]
- Xia, J.; Wang, L. Multi-UAV Cooperative Computing and Task Offloading Strategy Based on Non-Orthogonal Multiple Access. Comput. Digit. Eng. 2024, 52, 1298–1303. (In Chinese) [Google Scholar]
- Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge computing with artificial intelligence: A machine learning perspective. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.; Han, G.; Yu, R.; Yang, L.; Sun, G.; Qi, H.; Wei, X.; Zhang, Q. Decentralized navigation with heterogeneous federated reinforcement learning for UAV-enabled mobile edge computing. IEEE Trans. Mob. Comput. 2024, 23, 13621–23638. [Google Scholar] [CrossRef]
- Zhuang, W.; Xing, F.; Lu, Y. Task Offloading Strategy for Unmanned Aerial Vehicle Power Inspection Based on Deep Reinforcement Learning. Sensors 2024, 24, 2070. [Google Scholar] [CrossRef]
- Löppenberg, M.; Yuwono, S.; Diprasetya, M.R.; Schwung, A. Dynamic robot routing optimization: State–space decomposition for operations research-informed reinforcement learning. Robot.-Comput.-Integr. Manuf. 2024, 90, 102812. [Google Scholar] [CrossRef]
- Xu, X.Y.; Chen, Y.Y.; Liu, T.R. TD3-BC-PPO: Twin delayed DDPG-based and behavior cloning-enhanced proximal policy optimization for dynamic optimization affine formation. J. Frankl. Inst. 2024, 361, 107018. [Google Scholar] [CrossRef]
- Li, C.; Jiang, K.; He, G.; Bing, F.; Luo, Y. A Computation Offloading Method for Multi-UAVs Assisted MEC Based on Improved Federated DDPG Algorithm. IEEE Trans. Ind. Inform. 2024, 20, 14062–104071. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y. Deep ME Cagent: Multi-agent computing resource allocation for UAV-assisted mobile edge computing in distributed IoT system. Appl. Intell. 2023, 53, 1180–1191. [Google Scholar] [CrossRef]
- Abdulazeez, D.H.; Askar, S.K. A Novel Offloading Mechanism Leveraging Fuzzy Logic and Deep Reinforcement Learning to Improve IoT Application Performance in a Three-Layer Architecture Within the Fog-Cloud Environment. IEEE Access 2024, 12, 39936–39952. [Google Scholar] [CrossRef]
- Hu, H.; Sheng, Z.; Nasir, A.A.; Yu, H.; Fang, Y. Computation capacity maximization for UAV and RIS cooperative MEC system with NOMA. IEEE Commun. Lett. 2024, 28, 592–596. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Z.; Zhang, J.; Zhang, T.; Zhang, L.; Chen, H. UAV-assisted task offloading system using dung beetle optimization algorithm and deep reinforcement learning. Ad Hoc Netw. 2024, 156, 103434. [Google Scholar] [CrossRef]
Symbol | Physical Significance | Symbol | Physical Significance |
---|---|---|---|
R | Sub-region collection | Near-end transmission delay | |
A collection of IoT devices within the region r | Proximal computing delay | ||
j | UAVs in region : edge UAVs | The energy consumption of the UAV is calculated proximally | |
o | UAVs in region : cloud UAVs | The total delay of the proximal computation | |
Time-varying Euclidean distance from UAV j to IoT device k | Cloud transmission delay | ||
Time-varying Euclidean distance between UAV j and UAV o | Cloud computing delay | ||
Channel gain from UAV j to IoT device k | Calculate the energy consumption of UAVs remotely | ||
The transmission rate from UAV j to IoT device k | The total delay of the remote computing | ||
The transmission rate of UAV j and UAV o | The delay consumed by slot i | ||
The local computing delay of IoT device k | – | – |
Parameter Name | Symbol | Valid Value | Parameter Name | Symbol | Valid Value |
---|---|---|---|---|---|
Number of IoT devices | K | 4 | Channel gain (UAV-UAV) | −50 dB | |
Number of drones | J | 2 | UAV-IoT bandwidth | 1 MHz | |
Communication cycle | T | 400 s | Inter-UAV bandwidth | 1 MHz | |
Time slots | I | 40 s | IoT-UAV transmission power | 0.1 W | |
Time slot length | 10 s | UAV-UAV transmission power | 0.1 W | ||
Flight area of UAV 1 | (200, 200) m | Gaussian noise power | −100 dB | ||
Flight area of UAV 2 | (400, 200) m | Battery capacity of UAV | 500 kJ | ||
Flight time | 20 s | IoT CPU | 0.6 GHz | ||
Maximum flight speed | 20 m/s | Computing power of UAV | 1.2 GHz | ||
UAV quality | M | 9.65 kg | Total task count | D | 80 MBits |
Channel gain (UAV-IoT) | h | −50 dB | - | - | - |
Performance | Average Delay | Difference | Delay Reduction Rate | |
---|---|---|---|---|
TD3 | DDPG | |||
Amount of tasks (MBits) | 48.4 s | 58.2 s | 9.8 s | 20.2% |
Number of devices | 90.6 s | 99.5 s | 8.9 s | 9.8% |
Flight speed (m/s) | 64.8 s | 75.8 s | 11 s | 17.0% |
Flight time (s) | 66.4 s | 74.8 s | 8.4 s | 12.7% |
IOT computing power (GHz) | 67.8 s | 78 s | 10.2 s | 15.0% |
UAV computing power (GHz) | 89.4 s | 99.8 s | 10.4 s | 11.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Hu, H.; Bai, X.; Li, G.; Zhang, X.; Zhou, H.; Li, H.; Liu, J. Multi-UAV-Assisted Task Offloading and Trajectory Optimization for Edge Computing via NOMA. Sensors 2025, 25, 4965. https://doi.org/10.3390/s25164965
Liu J, Hu H, Bai X, Li G, Zhang X, Zhou H, Li H, Liu J. Multi-UAV-Assisted Task Offloading and Trajectory Optimization for Edge Computing via NOMA. Sensors. 2025; 25(16):4965. https://doi.org/10.3390/s25164965
Chicago/Turabian StyleLiu, Jiajia, Haoran Hu, Xu Bai, Guohua Li, Xudong Zhang, Haitao Zhou, Huiru Li, and Jianhua Liu. 2025. "Multi-UAV-Assisted Task Offloading and Trajectory Optimization for Edge Computing via NOMA" Sensors 25, no. 16: 4965. https://doi.org/10.3390/s25164965
APA StyleLiu, J., Hu, H., Bai, X., Li, G., Zhang, X., Zhou, H., Li, H., & Liu, J. (2025). Multi-UAV-Assisted Task Offloading and Trajectory Optimization for Edge Computing via NOMA. Sensors, 25(16), 4965. https://doi.org/10.3390/s25164965