A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment
Abstract
1. Introduction
2. Types of Biosensors and Working Mechanisms
2.1. Enzyme-Based Biosensors
2.2. Antibody-Based Biosensors
2.3. Nucleic Acid-Based Biosensors
2.4. Whole Cell-Based Biosensors
3. Application of Biosensors for Monitoring ECs in Water Environments
3.1. Pesticides Monitoring
3.1.1. Enzyme Biosensors for Pesticide Monitoring
3.1.2. Immunosensors for Pesticide Monitoring
3.1.3. Aptasensors for Pesticide Monitoring
3.1.4. Whole-Cell Biosensors for Pesticide Monitoring
3.2. Antibiotics Monitoring
3.2.1. Enzyme Biosensors for Antibiotic Monitoring
3.2.2. Immunosensors for Antibiotic Monitoring
3.2.3. Aptasensors for Antibiotic Monitoring
3.2.4. Whole-Cell Biosensors for Antibiotic Monitoring
3.3. Other Pollutants
3.3.1. EDCs
3.3.2. POPs
3.3.3. PFAS
3.4. Comparative Analysis of Biosensor Types
4. Challenges of the Application of Biosensors in Monitoring Emerging Contaminants in the Water Environment
5. Future Directions for Biosensor Development for Emerging Contaminants Detection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future Global Urban Water Scarcity and Potential Solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Ashbolt, N.J. Microbial Contamination of Drinking Water and Disease Outcomes in Developing Regions. Toxicology 2004, 198, 229–238. [Google Scholar] [CrossRef]
- Nina Progress on Household Drinking Water, Sanitation and Hygiene, 2000–2020: Five Years into the SDGs. Available online: https://data.unicef.org/resources/progress-on-household-drinking-water-sanitation-and-hygiene-2000-2020/ (accessed on 4 November 2024).
- United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2023: Special Edition; The Sustainable Development Goals Report; United Nations: New York, NY, USA, 2023; ISBN 978-92-1-002491-4. [Google Scholar]
- Martín-Pozo, L.; De Alarcón-Gómez, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical Methods for the Determination of Emerging Contaminants in Sewage Sludge Samples. A Review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef] [PubMed]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging Contaminants: Here Today, There Tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A Review on Emerging Water Contaminants and the Application of Sustainable Removal Technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging Contaminants as Global Environmental Hazards. A Bibliometric Analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, Z.; Zeng, G.; Xiao, R.; Wang, Y.; Hu, Y.; Tang, L.; Feng, C. Sensors for the Environmental Pollutant Detection: Are We Already There? Coord. Chem. Rev. 2021, 431, 213681. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical Biosensors for Detection of Pesticides and Heavy Metal Toxicants in Water: Recent Trends and Progress. ACS EST Water 2021, 1, 462–478. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lin, C.; Nguyen, M.K.; Hussain, A.; Bui, X.-T.; Ngo, H.H. A Review of Biosensor for Environmental Monitoring: Principle, Application, and Corresponding Achievement of Sustainable Development Goals. Bioengineered 2023, 14, 58–80. [Google Scholar] [CrossRef]
- Bereza-Malcolm, L.T.; Mann, G.; Franks, A.E. Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. ACS Synth. Biol. 2015, 4, 535–546. [Google Scholar] [CrossRef]
- Justino, C.; Duarte, A.; Rocha-Santos, T. Recent Progress in Biosensors for Environmental Monitoring: A Review. Sensors 2017, 17, 2918. [Google Scholar] [CrossRef]
- Ge, L.; Li, S.-P.; Lisak, G. Advanced Sensing Technologies of Phenolic Compounds for Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2020, 179, 112913. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, D.; Liu, Y.; Liu, R.; Wang, X.; Yu, Y.; Zhi, J. Problems Analysis and New Fabrication Strategies of Mediated Electrochemical Biosensors for Wastewater Toxicity Assessment. Biosens. Bioelectron. 2018, 108, 82–88. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Van Ginkel, S.W.; Hussein, M.A.M.; Abskharon, R.; Oh, S.-E. Toxicity Assessment Using Different Bioassays and Microbial Biosensors. Environ. Int. 2016, 92–93, 106–118. [Google Scholar] [CrossRef]
- Khanmohammadi, A.; Jalili Ghazizadeh, A.; Hashemi, P.; Afkhami, A.; Arduini, F.; Bagheri, H. An Overview to Electrochemical Biosensors and Sensors for the Detection of Environmental Contaminants. J. Iran. Chem. Soc. 2020, 17, 2429–2447. [Google Scholar] [CrossRef]
- Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.-A.; Soozanipour, A.; Low, Z.-X.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. Biosensors for Wastewater Monitoring: A Review. Biosens. Bioelectron. 2018, 118, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Guo, J. Smartphone-Powered Electrochemical Biosensing Dongle for Emerging Medical IoTs Application. IEEE Trans. Ind. Inf. 2018, 14, 2592–2597. [Google Scholar] [CrossRef]
- Ali, S.A.; Mittal, D.; Kaur, G. In-Situ Monitoring of Xenobiotics Using Genetically Engineered Whole-Cell-Based Microbial Biosensors: Recent Advances and Outlook. World J. Microbiol. Biotechnol. 2021, 37, 81. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N. Microbial-Derived Biosensors for Monitoring Environmental Contaminants: Recent Advances and Future Outlook. Process Saf. Environ. Prot. 2019, 124, 8–17. [Google Scholar] [CrossRef]
- Sohrabi, H.; Hemmati, A.; Majidi, M.R.; Eyvazi, S.; Jahanban-Esfahlan, A.; Baradaran, B.; Adlpour-Azar, R.; Mokhtarzadeh, A.; De La Guardia, M. Recent Advances on Portable Sensing and Biosensing Assays Applied for Detection of Main Chemical and Biological Pollutant Agents in Water Samples: A Critical Review. TrAC Trends Anal. Chem. 2021, 143, 116344. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, H.; Yang, Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ. Sci. Technol. 2020, 54, 3733–3735. [Google Scholar] [CrossRef]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.; Fiore, V.; et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef]
- Morrison, D.W.G.; Dokmeci, M.R.; Demirci, U.; Khademhosseini, A. Clinical Applications of Micro- and Nanoscale Biosensors. In Biomedical Nanostructures; Gonsalves, K.E., Halberstadt, C.R., Laurencin, C.T., Nair, L.S., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 439–460. ISBN 978-0-471-92552-1. [Google Scholar]
- Justino, C.I.L.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Rocha Santos, T.A.P. Recent Developments in Recognition Elements for Chemical Sensors and Biosensors. TrAC Trends Anal. Chem. 2015, 68, 2–17. [Google Scholar] [CrossRef]
- Lim, S.A.; Ahmed, M.U. Introduction to Food Biosensors. In Food Biosensors; Ahmed, M.U., Zourob, M., Tamiya, E., Eds.; The Royal Society of Chemistry: London, UK, 2016; pp. 1–21. ISBN 978-1-78262-361-8. [Google Scholar]
- Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Liu, H.; Ge, J.; Ma, E.; Yang, L. Advanced Biomaterials for Biosensor and Theranostics. In Biomaterials in Translational Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 213–255. ISBN 978-0-12-813477-1. [Google Scholar]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and Antibody-Derived Analytical Biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar] [CrossRef]
- Ionescu, R.E.; Jaffrezic-Renault, N.; Bouffier, L.; Gondran, C.; Cosnier, S.; Pinacho, D.G.; Marco, M.-P.; Sánchez-Baeza, F.J.; Healy, T.; Martelet, C. Impedimetric Immunosensor for the Specific Label Free Detection of Ciprofloxacin Antibiotic. Biosens. Bioelectron. 2007, 23, 549–555. [Google Scholar] [CrossRef]
- Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M.T.; Song, Y. Multi-Color Quantum Dot-Based Fluorescence Immunoassay Array for Simultaneous Visual Detection of Multiple Antibiotic Residues in Milk. Biosens. Bioelectron. 2015, 72, 320–325. [Google Scholar] [CrossRef]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, Solutions and Prospects. Acta Naturae 2013, 5, 34–43. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical Applications of Aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef]
- Dhiman, A.; Kalra, P.; Bansal, V.; Bruno, J.G.; Sharma, T.K. Aptamer-Based Point-of-Care Diagnostic Platforms. Sens. Actuators B Chem. 2017, 246, 535–553. [Google Scholar] [CrossRef]
- Hong, P.; Li, W.; Li, J. Applications of Aptasensors in Clinical Diagnostics. Sensors 2012, 12, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)Evolutionary Method to Generate High-Affinity Nucleic Acid Ligands. Biomol. Eng. 2007, 24, 381–403. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, C.-W.; Wang, D.; Wei, N. A Whole-Cell Biosensor for Point-of-Care Detection of Waterborne Bacterial Pathogens. ACS Synth. Biol. 2021, 10, 333–344. [Google Scholar] [CrossRef]
- Kylilis, N.; Riangrungroj, P.; Lai, H.-E.; Salema, V.; Fernández, L.Á.; Stan, G.-B.V.; Freemont, P.S.; Polizzi, K.M. Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. ACS Sens. 2019, 4, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. Sensors 2017, 17, 1623. [Google Scholar] [CrossRef]
- Moraskie, M.; Roshid, M.H.O.; O’Connor, G.; Dikici, E.; Zingg, J.-M.; Deo, S.; Daunert, S. Microbial Whole-Cell Biosensors: Current Applications, Challenges, and Future Perspectives. Biosens. Bioelectron. 2021, 191, 113359. [Google Scholar] [CrossRef] [PubMed]
- Berepiki, A.; Kent, R.; Machado, L.F.M.; Dixon, N. Development of High-Performance Whole Cell Biosensors Aided by Statistical Modeling. ACS Synth. Biol. 2020, 9, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Riangrungroj, P.; Bever, C.S.; Hammock, B.D.; Polizzi, K.M. A Label-Free Optical Whole-Cell Escherichia Coli Biosensor for the Detection of Pyrethroid Insecticide Exposure. Sci. Rep. 2019, 9, 12466. [Google Scholar] [CrossRef] [PubMed]
- Stoytcheva, M. Pesticides and Human Health. In Pesticides in the Modern World-Effects of Pesticides Exposure; IntechOpen: London, UK, 2011; ISBN 978-953-307-454-2. [Google Scholar]
- EPA, N. Pesticide-Use-Nsw. Available online: https://www.epa.nsw.gov.au/your-environment/pesticides/pesticide-use-nsw (accessed on 15 July 2024).
- Da Silva Sousa, J.; Do Nascimento, H.O.; De Oliveira Gomes, H.; Do Nascimento, R.F. Pesticide Residues in Groundwater and Surface Water: Recent Advances in Solid-Phase Extraction and Solid-Phase Microextraction Sample Preparation Methods for Multiclass Analysis by Gas Chromatography-Mass Spectrometry. Microchem. J. 2021, 168, 106359. [Google Scholar] [CrossRef]
- López-Benítez, A.; Guevara-Lara, A.; Domínguez-Crespo, M.A.; Andraca-Adame, J.A.; Torres-Huerta, A.M. Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review. Sustainability 2024, 16, 8066. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Xu, D.; Xu, X.; Li, L.; Zheng, S.; Lin, H.; Gao, H. Novel Zeolitic Imidazolate Frameworks Based on Magnetic Multiwalled Carbon Nanotubes for Magnetic Solid-Phase Extraction of Organochlorine Pesticides from Agricultural Irrigation Water Samples. Appl. Sci. 2018, 8, 959. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, B.; Zhang, Y.; Zhao, G.; Zhao, B. A Multi-Residue Electrochemical Biosensor Based on Graphene/Chitosan/Parathion for Sensitive Organophosphorus Pesticides Detection. Chem. Phys. Lett. 2021, 767, 138355. [Google Scholar] [CrossRef]
- Özkan, E.H.; Kurnaz Yetim, N.; Koç, M.M. Preparation and Characterization of AChE Immobilized Magnetic Bio-Nanocomposites (Fe3O4@Cht/Au) for Pesticide Detection. J. Environ. Sci. Health Part B 2024, 59, 368–377. [Google Scholar] [CrossRef]
- Arduini, F.; Guidone, S.; Amine, A.; Palleschi, G.; Moscone, D. Acetylcholinesterase Biosensor Based on Self-Assembled Monolayer-Modified Gold-Screen Printed Electrodes for Organophosphorus Insecticide Detection. Sens. Actuators B Chem. 2013, 179, 201–208. [Google Scholar] [CrossRef]
- Wei, M.; Zeng, G.; Lu, Q. Determination of Organophosphate Pesticides Using an Acetylcholinesterase-Based Biosensor Based on a Boron-Doped Diamond Electrode Modified with Gold Nanoparticles and Carbon Spheres. Microchim. Acta 2014, 181, 121–127. [Google Scholar] [CrossRef]
- Dou, J.; Ding, A.; Cheng, L.; Sekar, R.; Wang, H.; Li, S. A Screen-Printed, Amperometric Biosensor for the Determination of Organophosphorus Pesticides in Water Samples. J. Environ. Sci. 2012, 24, 956–962. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Chen, D.; Wang, Z.; Liu, G. A Sensitive Acetylcholinesterase Biosensor Based on Screen Printed Electrode Modified with FeO Nanoparticle and Graphene for Chlorpyrifos Determination. Int. J. Electrochem. Sci. 2016, 11, 10906–10918. [Google Scholar] [CrossRef]
- Cinti, S.; Neagu, D.; Carbone, M.; Cacciotti, I.; Moscone, D.; Arduini, F. Novel Carbon Black-Cobalt Phthalocyanine Nanocomposite as Sensing Platform to Detect Organophosphorus Pollutants at Screen-Printed Electrode. Electrochim. Acta 2016, 188, 574–581. [Google Scholar] [CrossRef]
- Chen, J.; Ji, C.; Wang, X.; Tian, Y.; Tao, H. A New Plant-Esterase Inhibition Based Electrochemical Sensor with Signal Amplification by MoS 2 @N-CDs for Chlorpyrifos Detection. RSC Adv. 2024, 14, 10703–10713. [Google Scholar] [CrossRef]
- Murthy, M.R.; Mandappa, I.M.; Latha, R.; Vinayaka, A.C.; Thakur, M.S.; Manonmani, H.K. An Immobilized Dehydrohalogenase Based Potentiometric Biosensor for the Detection of Chlorinated Pesticides. Anal. Methods 2010, 2, 1355. [Google Scholar] [CrossRef]
- Islam, S.; Shukla, S.; Bajpai, V.K.; Han, Y.-K.; Huh, Y.S.; Ghosh, A.; Gandhi, S. Microfluidic-Based Graphene Field Effect Transistor for Femtomolar Detection of Chlorpyrifos. Sci. Rep. 2019, 9, 276. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Mercader, J.V.; Abad-Fuentes, A.; Checa-Orrego, B.I.; Costa-García, A.; Escosura-Muñiz, A.D.L. Direct Competitive Immunosensor for Imidacloprid Pesticide Detection on Gold Nanoparticle-Modified Electrodes. Talanta 2020, 209, 120465. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Jin, M.; Du, P.; Chen, G.; Cui, X.; Zhang, Y.; Qin, G.; Yan, F.; Abd El-Aty, A.M.; et al. Fluorescence Immunoassay for Multiplex Detection of Organophosphate Pesticides in Agro-Products Based on Signal Amplification of Gold Nanoparticles and Oligonucleotides. Food Chem. 2020, 326, 126813. [Google Scholar] [CrossRef]
- Lan, J.; Sun, W.; Chen, L.; Zhou, H.; Fan, Y.; Diao, X.; Wang, B.; Zhao, H. Simultaneous and Rapid Detection of Carbofuran and 3-Hydroxy-Carbofuran in Water Samples and Pesticide Preparations Using Lateral-Flow Immunochromatographic Assay. Food Agric. Immunol. 2020, 31, 165–175. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Wang, Y.; Zhao, Y.; Li, Y.; Han, L.; Lu, L. A Low-Background Fluorescent Aptasensor for Acetamiprid Detection Based on DNA Three-Way Junction-Formed G-Quadruplexes and Graphene Oxide. Anal. Bioanal. Chem. 2021, 413, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Bahreyni, A.; Yazdian-Robati, R.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Fluorometric Aptasensing of the Neonicotinoid Insecticide Acetamiprid by Using Multiple Complementary Strands and Gold Nanoparticles. Microchim. Acta 2018, 185, 272. [Google Scholar] [CrossRef] [PubMed]
- Saberi, Z.; Rezaei, B.; Ensafi, A.A. Fluorometric Label-Free Aptasensor for Detection of the Pesticide Acetamiprid by Using Cationic Carbon Dots Prepared with Cetrimonium Bromide. Microchim. Acta 2019, 186, 273. [Google Scholar] [CrossRef]
- Su, L.; Wang, S.; Wang, L.; Yan, Z.; Yi, H.; Zhang, D.; Shen, G.; Ma, Y. Fluorescent Aptasensor for Carbendazim Detection in Aqueous Samples Based on Gold Nanoparticles Quenching Rhodamine B. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 225, 117511. [Google Scholar] [CrossRef]
- Whangsuk, W.; Thiengmag, S.; Dubbs, J.; Mongkolsuk, S.; Loprasert, S. Specific Detection of the Pesticide Chlorpyrifos by a Sensitive Genetic-Based Whole Cell Biosensor. Anal. Biochem. 2016, 493, 11–13. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, T.; Liang, B.; Han, D.; Zeng, L.; Zheng, C.; Li, T.; Wei, M.; Liu, A. Sensitive Electrochemical Microbial Biosensor for P-Nitrophenylorganophosphates Based on Electrode Modified with Cell Surface-Displayed Organophosphorus Hydrolase and Ordered Mesopore Carbons. Biosens. Bioelectron. 2014, 60, 137–142. [Google Scholar] [CrossRef]
- Anu Prathap, M.U.; Chaurasia, A.K.; Sawant, S.N.; Apte, S.K. Polyaniline-Based Highly Sensitive Microbial Biosensor for Selective Detection of Lindane. Anal. Chem. 2012, 84, 6672–6678. [Google Scholar] [CrossRef]
- López Rodriguez, M.L.; Benimeli, C.; Madrid, R.E.; Giacomelli, C.E. A Simple Streptomyces Spore-Based Impedimetric Biosensor to Detect Lindane Pesticide. Sens. Actuators B Chem. 2015, 207, 447–454. [Google Scholar] [CrossRef]
- Hua, A.; Gueuné, H.; Cregut, M.; Thouand, G.; Durand, M.-J. Development of a Bacterial Bioassay for Atrazine and Cyanuric Acid Detection. Front. Microbiol. 2015, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Braham, Y.; Barhoumi, H.; Maaref, A. Urease Capacitive Biosensors Using Functionalized Magnetic Nanoparticles for Atrazine Pesticide Detection in Environmental Samples. Anal. Methods 2013, 5, 4898. [Google Scholar] [CrossRef]
- Kaur, J.; Bandyopadhyay, D.; Singh, P.K. A Simple and Convenient Choline Oxidase Inhibition Based Colorimetric Biosensor for Detection of Organophosphorus Class of Pesticides. J. Mol. Liq. 2022, 347, 118258. [Google Scholar] [CrossRef]
- Rafaqat, S.; Raqba; Ali, N.; Hussain, A. Validating Role of Different Enzymes (Laccases and Catalases) Based Voltammetric Biosensors in Detection of Pesticide and Dye. Mater. Chem. Phys. 2022, 290, 126545. [Google Scholar] [CrossRef]
- Abedeen, M.Z.; Sharma, M.; Singh Kushwaha, H.; Gupta, R. Sensitive Enzyme-Free Electrochemical Sensors for the Detection of Pesticide Residues in Food and Water. TrAC Trends Anal. Chem. 2024, 176, 117729. [Google Scholar] [CrossRef]
- Fauzi, N.I.M.; Fen, Y.W.; Omar, N.A.S.; Hashim, H.S. Recent Advances on Detection of Insecticides Using Optical Sensors. Sensors 2021, 21, 3856. [Google Scholar] [CrossRef]
- Mashuni, M.; Ritonga, H.; Jahiding, M.; Rubak, B.; Hamid, F.H. Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. Chemosensors 2022, 10, 138. [Google Scholar] [CrossRef]
- Ma, H.; Li, M.; Yu, T.; Zhang, H.; Xiong, M.; Li, F. Magnetic ZIF-8-Based Mimic Multi-Enzyme System as a Colorimetric Biosensor for Detection of Aryloxyphenoxypropionate Herbicides. ACS Appl. Mater. Interfaces 2021, 13, 44329–44338. [Google Scholar] [CrossRef] [PubMed]
- Amir Hafiz, M.F.; Ahmad, F.B.; Akmal, M.H.M. Novel Rhizophus Oryzae Esterase-Immobilized Chitosan/Carbon Nanomaterials as Sensing Support for Enzyme Inhibition-Based Biosensor in the Detection of Organophosphorus Pesticide Residues on Crops. J. Nat. Pestic. Res. 2024, 10, 100092. [Google Scholar] [CrossRef]
- Shah, M.M.; Ren, W.; Irudayaraj, J.; Sajini, A.A.; Ali, M.I.; Ahmad, B. Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. Sensors 2021, 21, 8050. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, B.; Zhang, Z.; Lou, D.; Tan, J.; Zhu, L. The Effects of Macromolecular Crowding and Surface Charge on the Properties of an Immobilized Enzyme: Activity, Thermal Stability, Catalytic Efficiency and Reusability. RSC Adv. 2017, 7, 38028–38036. [Google Scholar] [CrossRef]
- Shrikrishna, N.S.; Kolhe, P.; Gandhi, S. Sensitive Detection of Monocrotophos Using a Voltametric Immunosensor with Randomly Layered Graphene Oxide (GO) on Fabricated Electrode. J. Environ. Chem. Eng. 2024, 12, 112059. [Google Scholar] [CrossRef]
- Dewen, T.; Yang, H.; Jinyi, W. Recent Advances in the Synthesis of Artificial Antigen and Its Application in the Detection of Pesticide Residue. Am. J. Agric. Biol. Sci. 2007, 2, 88–93. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, D.; Xu, Z.; Yu, H.; Zhou, J. Molecular Understanding of Acetylcholinesterase Adsorption on Functionalized Carbon Nanotubes for Enzymatic Biosensors. Phys. Chem. Chem. Phys. 2022, 24, 2866–2878. [Google Scholar] [CrossRef]
- Della Ventura, B.; Iannaccone, M.; Funari, R.; Pica Ciamarra, M.; Altucci, C.; Capparelli, R.; Roperto, S.; Velotta, R. Effective Antibodies Immobilization and Functionalized Nanoparticles in a Quartz-Crystal Microbalance-Based Immunosensor for the Detection of Parathion. PLoS ONE 2017, 12, e0171754. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, S.; Chen, F.; Lv, Y.; Fu, L. Enhancing Sensitivity and Selectivity: Current Trends in Electrochemical Immunosensors for Organophosphate Analysis. Biosensors 2024, 14, 496. [Google Scholar] [CrossRef]
- Qasim Almajidi, Y.; Algahtani, S.M.; Sajjad Alsawad, O.; Setia Budi, H.; Mansouri, S.; Ali, I.R.; Mazin Al-Hamdani, M.; Mireya Romero-Parra, R. Recent Applications of Microfluidic Immunosensors. Microchem. J. 2023, 190, 108733. [Google Scholar] [CrossRef]
- Willner, I.; Zayats, M. Electronic Aptamer-Based Sensors. Angew. Chem. Int. Ed. 2007, 46, 6408–6418. [Google Scholar] [CrossRef]
- Pushparajah, S.; Shafiei, M.; Yu, A. Current Advances in Aptasensors for Pesticide Detection. Top. Curr. Chem. 2025, 383, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zheng, Z.; Li, X. Advances in Pesticide Biosensors: Current Status, Challenges, and Future Perspectives. Anal. Bioanal. Chem. 2013, 405, 63–90. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Wu, H.; Cui, Z.; Tang, J. Indirect Competitive Aptamer-Based Enzyme-Linked Immunosorbent Assay (Apt-ELISA) for the Specific and Sensitive Detection of Isocarbophos Residues. Anal. Lett. 2019, 52, 1966–1975. [Google Scholar] [CrossRef]
- Chen, G.; Zhai, R.; Liu, G.; Huang, X.; Zhang, K.; Xu, X.; Li, L.; Zhang, Y.; Wang, J.; Jin, M.; et al. A Competitive Assay Based on Dual-Mode Au@Pt-DNA Biosensors for On-Site Sensitive Determination of Carbendazim Fungicide in Agricultural Products. Front. Nutr. 2022, 9, 820150. [Google Scholar] [CrossRef]
- Abnous, K.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Taghdisi, S.M. Aptamer Based Fluorometric Acetamiprid Assay Using Three Kinds of Nanoparticles for Powerful Signal Amplification. Microchim. Acta 2017, 184, 81–90. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Dolatabadi, J.E.N. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2022, 52, 1818–1845. [Google Scholar] [CrossRef]
- Hermanto, D.; Ismillayli, N.; Muliasari, H.; Wirawan, R.; Kamali, S.R. Silver-Based Plasmonic Nanoparticles for Biosensor Organophosphate Pesticides Using a Single Film Containing Acetylcholinesterase/Choline Oxidase. Glob. J. Environ. Sci. Manag. 2023, 10, 39–50. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, Y.; Xiao, Y.; Li, Z.; Sheng, E.; Dai, Z. A Silver@gold Nanoparticle Tetrahedron Biosensor for Multiple Pesticides Detection Based on Surface-Enhanced Raman Scattering. Talanta 2021, 234, 122585. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.; Miranda, E.; Amaral, L.; Carvalho, C.; Castro, B.B.; Sousa, M.J.; Chaves, S.R. Novel Yeast-Based Biosensor for Environmental Monitoring of Tebuconazole. Appl. Microbiol. Biotechnol. 2024, 108, 10. [Google Scholar] [CrossRef]
- Hoyano, Y.; Tamashiro, I.; Akimoto, T. Fusion Proteins of Organophosphorus Hydrolase and pHluorin for a Whole-Cell Biosensor for Organophosphorus Pesticide Measurement. Anal. Sci. 2023, 39, 1515–1520. [Google Scholar] [CrossRef]
- Yagi, K. Applications of Whole-Cell Bacterial Sensors in Biotechnology and Environmental Science. Appl. Microbiol. Biotechnol. 2007, 73, 1251–1258. [Google Scholar] [CrossRef]
- Teng, T.; Huang, W.E.; Li, G.; Wang, X.; Song, Y.; Tang, X.; Dawa, D.; Jiang, B.; Zhang, D. Application of Magnetic-Nanoparticle Functionalized Whole-Cell Biosensor Array for Bioavailability and Ecotoxicity Estimation at Urban Contaminated Sites. Sci. Total Environ. 2023, 896, 165292. [Google Scholar] [CrossRef]
- Ponamoreva, O.N.; Kamanina, O.A.; Alferov, V.A.; Machulin, A.V.; Rogova, T.V.; Arlyapov, V.A.; Alferov, S.V.; Suzina, N.E.; Ivanova, E.P. Yeast-Based Self-Organized Hybrid Bio-Silica Sol–Gels for the Design of Biosensors. Biosens. Bioelectron. 2015, 67, 321–326. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, B.; Zhu, Z.; Xin, X.; Wu, H.; Chen, B. Microfluidic Based Whole-Cell Biosensors for Simultaneously On-Site Monitoring of Multiple Environmental Contaminants. Front. Bioeng. Biotechnol. 2021, 9, 622108. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.E.; Merkel, R.; Springer, O.; Jurkojc, P.; Maier, C.; Prechtel, K.; Smetacek, V. Architecture and Material Properties of Diatom Shells Provide Effective Mechanical Protection. Nature 2003, 421, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Nnadozie, C.F.; Odume, O.N. Freshwater Environments as Reservoirs of Antibiotic Resistant Bacteria and Their Role in the Dissemination of Antibiotic Resistance Genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef]
- Si, L.; Yi, L.; Yang, W.; Jingrun, H.; Yiqing, Z.; Qian, S.; Weiling, S.; Jiagen, G.; Xiaoying, L.; Dantong, J.; et al. Antibiotics in Global Rivers. Natl. Sci. Open 2022, 1, 20220029. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Wang, T.; Xu, N.; Lu, T.; Hong, W.; Penuelas, J.; Gillings, M.; Wang, M.; Gao, W.; et al. Assessment of Global Health Risk of Antibiotic Resistance Genes. Nat. Commun. 2022, 13, 1553. [Google Scholar] [CrossRef]
- Hoa, P.T.P.; Managaki, S.; Nakada, N.; Takada, H.; Shimizu, A.; Anh, D.H.; Viet, P.H.; Suzuki, S. Antibiotic Contamination and Occurrence of Antibiotic-Resistant Bacteria in Aquatic Environments of Northern Vietnam. Sci. Total Environ. 2011, 409, 2894–2901. [Google Scholar] [CrossRef]
- Muhammad, J.; Khan, S.; Su, J.Q.; Hesham, A.E.-L.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in Poultry Manure and Their Associated Health Issues: A Systematic Review. J. Soils Sediments 2020, 20, 486–497. [Google Scholar] [CrossRef]
- Méndez-Albores, A.; Tarín, C.; Rebollar-Pérez, G.; Dominguez-Ramirez, L.; Torres, E. Biocatalytic Spectrophotometric Method to Detect Paracetamol in Water Samples. J. Environ. Sci. Health Part A 2015, 50, 1046–1056. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Callera, W.F.A.; Sotomayor, M.D.P.T.; Bueno, P.R. Penicillinase-Based Amperometric Biosensor for Penicillin G. Electrochem. Commun. 2014, 38, 131–133. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Mayorga-Martinez, C.C.; Medina-Sánchez, M.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Antithyroid Drug Detection Using an Enzyme Cascade Blocking in a Nanoparticle-based Lab-on-a-chip System. Biosens. Bioelectron. 2015, 67, 670–676. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Rivas, L.; Ozkan, S.A.; Merkoçi, A. Electrochemically Reduced Graphene and Iridium Oxide Nanoparticles for Inhibition-Based Angiotensin-Converting Enzyme Inhibitor Detection. Biosens. Bioelectron. 2017, 88, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Medyantseva, E.P.; Brusnitsyn, D.V.; Varlamova, R.M.; Maksimov, A.A.; Fattakhova, A.N.; Konovalova, O.A.; Budnikov, G.K. Effect of Nanostructured Materials as Electrode Surface Modifiers on the Analytical Capacity of Amperometric Biosensors. Russ. J. Appl. Chem. 2015, 88, 40–49. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Wu, X.; Dong, S.; Zhu, N.; Gyimah, E.; Wang, K.; Li, Y. A Competitive Immunosensor for Ultrasensitive Detection of Sulphonamides from Environmental Waters Using Silver Nanoparticles Decorated Single-Walled Carbon Nanohorns as Labels. Chemosphere 2019, 225, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Merola, G.; Martini, E.; Tomassetti, M.; Campanella, L. New Immunosensor for β-Lactam Antibiotics Determination in River Waste Waters. Sens. Actuators B Chem. 2014, 199, 301–313. [Google Scholar] [CrossRef]
- Tomassetti, M.; Merola, G.; Martini, E.; Campanella, L.; Sanzò, G.; Favero, G.; Mazzei, F. Comparison between a Direct-Flow SPR Immunosensor for Ampicillin and a Competitive Conventional Amperometric Device: Analytical Features and Possible Applications to Real Samples. Sensors 2017, 17, 819. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Zhao, C.; Istamboulie, G.; Amaly, N.; Si, Y.; Noguer, T.; Sun, G. Ultrasensitive Label-Free Electrochemical Immunosensor Based on PVA-Co-PE Nanofibrous Membrane for the Detection of Chloramphenicol Residues in Milk. Biosens. Bioelectron. 2018, 117, 838–844. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, S.; Hu, Y.; Li, Z.; Luo, F.; He, Z. Electrochemical Immunosensor Based on the Chitosan-Magnetic Nanoparticles for Detection of Tetracycline. Food Anal. Methods 2016, 9, 2972–2978. [Google Scholar] [CrossRef]
- Jahanbani, S.; Benvidi, A. Comparison of Two Fabricated Aptasensors Based on Modified Carbon Paste/Oleic Acid and Magnetic Bar Carbon Paste/Fe3O4@oleic Acid Nanoparticle Electrodes for Tetracycline Detection. Biosens. Bioelectron. 2016, 85, 553–562. [Google Scholar] [CrossRef]
- Yu, S.; Wei, Q.; Du, B.; Wu, D.; Li, H.; Yan, L.; Ma, H.; Zhang, Y. Label-Free Immunosensor for the Detection of Kanamycin Using Ag@Fe3O4 Nanoparticles and Thionine Mixed Graphene Sheet. Biosens. Bioelectron. 2013, 48, 224–229. [Google Scholar] [CrossRef]
- Kazerooni, H.; Bahreyni, A.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. A Colorimetric Aptasensor for Selective Detection of Oxytetracycline in Milk, Using Gold Nanoparticles and Oxytetracline-Short Aptamer. |Nanomedicine Journal|EBSCOhost. Available online: https://openurl.ebsco.com/contentitem/doi:10.22038%2Fnmj.2019.06.0004?sid=ebsco:plink:crawler&id=ebsco:doi:10.22038%2Fnmj.2019.06.0004 (accessed on 3 July 2025).
- Tan, B.; Zhao, H.; Du, L.; Gan, X.; Quan, X. A Versatile Fluorescent Biosensor Based on Target-Responsive Graphene Oxide Hydrogel for Antibiotic Detection. Biosens. Bioelectron. 2016, 83, 267–273. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent Aptasensor for Antibiotic Detection Using Magnetic Bead Composites Coated with Gold Nanoparticles and a Nicking Enzyme. Anal. Chim. Acta 2017, 984, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Huang, Y.; Tang, D.; Cui, H.; Cao, H. A Competitive Colorimetric Chloramphenicol Assay Based on the Non-Cross-Linking Deaggregation of Gold Nanoparticles Coated with a Polyadenine-Modified Aptamer. Microchim. Acta 2018, 185, 534. [Google Scholar] [CrossRef]
- Geng, Y.; Guo, M.; Tan, J.; Huang, S.; Tang, Y.; Tan, L.; Liang, Y. A Fluorescent Molecularly Imprinted Polymer Using Aptamer as a Functional Monomer for Sensing of Kanamycin. Sens. Actuators B Chem. 2018, 268, 47–54. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, H.; Lai, G.; Liu, S.; Li, B.; Yu, A. Sensitive and Rapid Aptasensing of Chloramphenicol by Colorimetric Signal Transduction with a DNAzyme-Functionalized Gold Nanoprobe. Food Chem. 2019, 270, 287–292. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, J.; Sallach, J.B.; Hu, X.; Gao, Y. Whole-Cell Paper Strip Biosensors to Semi-Quantify Tetracycline Antibiotics in Environmental Matrices. Biosens. Bioelectron. 2020, 168, 112528. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Liu, Z.; Tao, S.; Zhang, T.; Chen, Y.; Bao, L.; Ma, J.; Huang, Y.; Xu, S.; et al. Directed Evolution of TetR for Constructing Sensitive and Broad-Spectrum Tetracycline Antibiotics Whole-Cell Biosensor. J. Hazard. Mater. 2023, 460, 132311. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhu, Y.; Liang, Y.; Luo, Y.; Lou, J.; Hu, X.; Meng, Q.; Zhu, T.; Yu, Z. Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium. Appl. Environ. Microbiol. 2022, 88, e00846-22. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Bhalla, A. Recent Magneto/Electrochemical/Biosensors and Analytical Approaches to Detect β-Lactam Antibiotics in Food and Environment. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Elsevier: Amsterdam, The Netherlands, 2024; pp. 285–300. ISBN 978-0-443-16164-3. [Google Scholar]
- Que, X.; Liu, B.; Fu, L.; Zhuang, J.; Chen, G.; Tang, D. Molecular Imprint for Electrochemical Detection of Streptomycin Residues Using Enzyme Signal Amplification. Electroanalysis 2013, 25, 531–537. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, K.; Sheng, R.; Wang, Y.; Zhou, H.; Cai, K.; Xu, B. A Novel Biosensor Utilizing the Peroxidase-like Activity of Bovine Spleen Ferritin for Highly Sensitive Detection of Tetracycline Antibiotics. J. Food Compos. Anal. 2023, 119, 105277. [Google Scholar] [CrossRef]
- Beilinson, R.M.; Yavisheva, A.A.; Lopatko, N.Y.; Medyantseva, E.P. Amperometric Biosensors for the Determination of Tetracycline. Inorg. Mater. 2023, 59, 1462–1469. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Wu, X.; Song, Y.; Huang, Y.; Yang, X.; Chen, X. A Novel Colorimetric Aptasensor for Sensitive Tetracycline Detection Based on the Peroxidase-like Activity of Fe3O4@Cu Nanoparticles and “Sandwich” Oligonucleotide Hybridization. Microchim. Acta 2022, 189, 86. [Google Scholar] [CrossRef]
- Ran, L.; Feng, N.; Dong, Y.; Cai, H.; Chen, Y.; Teng, H. Rational Design of MOF-Based Multifunctional Bio-Nanoreactor for Efficient Detection and Photo-Degradation of Chloramphenicol. Adv. Sci. 2025, 12, 2414866. [Google Scholar] [CrossRef]
- Conzuelo, F.; Gamella, M.; Campuzano, S.; Pinacho, D.G.; Reviejo, A.J.; Marco, M.P.; Pingarrón, J.M. Disposable and Integrated Amperometric Immunosensor for Direct Determination of Sulfonamide Antibiotics in Milk. Biosens. Bioelectron. 2012, 36, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lai, G.; Liu, S.; Yu, A. Ultrasensitive Electrochemical Aptasensing of Kanamycin Antibiotic by Enzymatic Signal Amplification with a Horseradish Peroxidase-Functionalized Gold Nanoprobe. Sens. Actuators B Chem. 2018, 273, 1762–1767. [Google Scholar] [CrossRef]
- Tang, N.; Shi, S.; Zhou, C.; Ding, J.; Chen, A.; He, Q.; Wang, W. Electrochemically Ultrasensitive Detection of Ampicillin Using Enzyme-Mediated Metallo-β-Lactamase/CS/Bi2WO6/MWCNTs-COOH Biosensor. Microchem. J. 2024, 207, 112294. [Google Scholar] [CrossRef]
- Jimenez-Carretero, M.; Jabalera, Y.; Sola-Leyva, A.; Carrasco-Jimenez, M.P.; Jimenez-Lopez, C. Nanoassemblies of Acetylcholinesterase and β-Lactamase Immobilized on Magnetic Nanoparticles as Biosensors to Detect Pollutants in Water. Talanta 2023, 258, 124406. [Google Scholar] [CrossRef] [PubMed]
- Campaña, A.L.; Florez, S.L.; Noguera, M.J.; Fuentes, O.P.; Ruiz Puentes, P.; Cruz, J.C.; Osma, J.F. Enzyme-Based Electrochemical Biosensors for Microfluidic Platforms to Detect Pharmaceutical Residues in Wastewater. Biosensors 2019, 9, 41. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Hassan, R.Y.A. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors 2022, 22, 7539. [Google Scholar] [CrossRef]
- Pollap, A.; Kochana, J. Electrochemical Immunosensors for Antibiotic Detection. Biosensors 2019, 9, 61. [Google Scholar] [CrossRef]
- Hiep, L.T.T.; Teerasitwaratorn, K.; Bora, T. Surface Plasmon Resonance (SPR) Biosensors for Antibiotic Residue Detection. In Nanoscale Matter and Principles for Sensing and Labeling Applications; Mohanta, D., Chakraborty, P., Eds.; Advanced Structured Materials; Springer Nature: Singapore, 2024; Volume 206, pp. 447–467. ISBN 978-981-9978-47-2. [Google Scholar]
- Sabzehmeidani, M.M.; Kazemzad, M. Quantum Dots Based Sensitive Nanosensors for Detection of Antibiotics in Natural Products: A Review. Sci. Total Environ. 2022, 810, 151997. [Google Scholar] [CrossRef]
- Wei, D.; Liu, J.; Wang, Z.; Zhou, S.; Wang, S.; Tong, W.; Peng, J. Quantum Dot Nanobeads Based Fluorescence Immunoassay for the Quantitative Detection of Sulfamethazine in Chicken and Milk. Sensors 2021, 21, 6604. [Google Scholar] [CrossRef]
- Wang, X.; Xing, G.; Li, N.; Xie, Y.; Lin, L. An Integrated Microfluidic Device for the Simultaneous Detection of Multiple Antibiotics. Chin. Chem. Lett. 2023, 34, 108110. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sen, S.; Das, A.; Kundu, S.; RoyChaudhuri, C. Graphene FET Biochip on PCB Reinforced by Machine Learning for Ultrasensitive Parallel Detection of Multiple Antibiotics in Water. Biosens. Bioelectron. 2025, 271, 117023. [Google Scholar] [CrossRef] [PubMed]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mohamed, M.A.; Vinu Mohan, A.M.; Zhu, Z.; Sharma, V.; Mishra, G.K.; Mishra, R.K. Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review. Sensors 2019, 19, 5435. [Google Scholar] [CrossRef]
- Nehra, M.; Kanika; Dilbaghi, N.; Kumar, R.; Kumar, S. Trends in Point-of-Care Optical Biosensors for Antibiotics Detection in Aqueous Media. Mater. Lett. 2022, 308, 131235. [Google Scholar] [CrossRef]
- Grodzinski, P.; Silver, M.; Molnar, L.K. Nanotechnology for Cancer Diagnostics: Promises and Challenges. Expert Rev. Mol. Diagn. 2006, 6, 307–318. [Google Scholar] [CrossRef]
- Parak, W.J.; Pellegrino, T.; Plank, C. Labelling of Cells with Quantum Dots. Nanotechnology 2005, 16, R9–R25. [Google Scholar] [CrossRef]
- Yan, K.; Liu, Y.; Yang, Y.; Zhang, J. A Cathodic “Signal-off” Photoelectrochemical Aptasensor for Ultrasensitive and Selective Detection of Oxytetracycline. Anal. Chem. 2015, 87, 12215–12220. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Wang, X.; Zhao, J.; Zhao, P.; Ma, Y.; Zhang, S.; Huo, D.; Hou, C.; Ren, K. Graphene Oxide Mediated CdSe Quantum Dots Fluorescent Aptasensor for High Sensitivity Detection of Fluoroquinolones. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 305, 123497. [Google Scholar] [CrossRef]
- Gong, T.; Yan, H.; Li, D.; Jiang, B.; Xiang, Y.; Yuan, R. Multiplexed and Highly Sensitive FRET Aptasensor for Simultaneous Assay of Multiple Antibiotics via DNAzyme and Catalytic Strand Displacement Amplification Cascades. Anal. Chim. Acta 2025, 1357, 344069. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, X.; Ye, S.; Yang, H.; Huang, Z.; Yang, D.; Cai, R.; Tan, W. Aptamer-Pendant DNA Tetrahedron Nanostructure Probe for Ultrasensitive Detection of Tetracycline by Coupling Target-Triggered Rolling Circle Amplification. ACS Appl. Mater. Interfaces 2021, 13, 19695–19700. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Du, C.; Li, Y.; Ma, X.; Yang, C.; Xu, W.; Sun, C. Structure-Switching Aptamer Triggering Signal Amplification Strategy for Tobramycin Detection Based on Hybridization Chain Reaction and Fluorescence Synergism. Talanta 2022, 243, 123318. [Google Scholar] [CrossRef]
- Taha, B.A.; Ahmed, N.M.; Talreja, R.K.; Haider, A.J.; Al Mashhadany, Y.; Al-Jubouri, Q.; Huddin, A.B.; Mokhtar, M.H.H.; Rustagi, S.; Kaushik, A.; et al. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis. ACS Synth. Biol. 2024, 13, 1600–1620. [Google Scholar] [CrossRef]
- Huang, W.-C.; Wei, C.-D.; Belkin, S.; Hsieh, T.-H.; Cheng, J.-Y. Machine-Learning Assisted Antibiotic Detection and Categorization Using a Bacterial Sensor Array. Sens. Actuators B Chem. 2022, 355, 131257. [Google Scholar] [CrossRef]
- Mostajabodavati, S.; Mousavizadegan, M.; Hosseini, M.; Mohammadimasoudi, M.; Mohammadi, J. Machine Learning-Assisted Liquid Crystal-Based Aptasensor for the Specific Detection of Whole-Cell Escherichia Coli in Water and Food. Food Chem. 2024, 448, 139113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Y.; Wang, L.; Zhu, L.; Dong, Y.; Xu, W. A Ratiometric Dual-Fluorescent Paper-Based Synthetic Biosensor for Visual Detection of Tetracycline on-Site. J. Hazard. Mater. 2024, 467, 133647. [Google Scholar] [CrossRef]
- Liu, W.; Chen, G.; Li, Y.; Dong, H. Development of a Whole-Cell Biosensor for the Detection of Low Concentrations of Tetracycline. J. Environ. Sci. 2025, S1001074225003778. [Google Scholar] [CrossRef]
- Dong, X.; Cheng, Q.; Qi, S.; Qin, M.; Ding, N.; Sun, Y.; Xia, Y.; Zhang, Y.; Wang, Z. Broad-Spectrum Detection of Tetracyclines by Riboswitch-Based Cell-Free Expression Biosensing. J. Agric. Food Chem. 2023, 71, 9886–9895. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sun, J.; Fu, X.; Ye, Y.; Tian, R.; Bao, Q.; Zheng, M.; Zhang, L.; Sun, X. Biosensors Based on Cell-Free Synthetic Expression for Environmental Monitoring and Food Hazards Detection: Principle, Design, and Application. Chem. Eng. J. 2024, 499, 155632. [Google Scholar] [CrossRef]
- Singh, A.C.; Asif, M.H.; Bacher, G.; Danielsson, B.; Willander, M.; Bhand, S. Nanoimmunosensor Based on ZnO Nanorods for Ultrasensitive Detection of 17β-Estradiol. Biosens. Bioelectron. 2019, 126, 15–22. [Google Scholar] [CrossRef]
- Yan, T.; Wu, T.; Wei, S.; Wang, H.; Sun, M.; Yan, L.; Wei, Q.; Ju, H. Photoelectrochemical Competitive Immunosensor for 17β-Estradiol Detection Based on ZnIn2S4@NH2-MIL-125(Ti) Amplified by PDA NS/Mn:ZnCdS. Biosens. Bioelectron. 2020, 148, 111739. [Google Scholar] [CrossRef]
- Wu, T.; Yan, T.; Zhang, X.; Feng, Y.; Wei, D.; Sun, M.; Du, B.; Wei, Q. A Competitive Photoelectrochemical Immunosensor for the Detection of Diethylstilbestrol Based on an Au/UiO-66(NH2)/CdS Matrix and a Direct Z-Scheme Melem/CdTe Heterojunction as Labels. Biosens. Bioelectron. 2018, 117, 575–582. [Google Scholar] [CrossRef]
- Pu, H.; Xie, X.; Sun, D.-W.; Wei, Q.; Jiang, Y. Double Strand DNA Functionalized Au@Ag Nps for Ultrasensitive Detection of 17β-Estradiol Using Surface-Enhanced Raman Spectroscopy. Talanta 2019, 195, 419–425. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.-X.; Pan, C.-G.; He, Y.-S.; Liu, H.-F.; Zhou, L.-H.; Li, C.-Q.; Liang, G.-X. A Fluorometric Aptasensor for Bisphenol a Based on the Inner Filter Effect of Gold Nanoparticles on the Fluorescence of Nitrogen-Doped Carbon Dots. Microchim. Acta 2019, 186, 28. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.-X.; Wang, L.; Pan, C.-G.; He, Y.-S.; Liang, G.-X. Aptamer Based Electrochemiluminescent Determination of Bisphenol A by Using Carboxylated Graphitic Carbon Nitride. Microchim. Acta 2018, 185, 463. [Google Scholar] [CrossRef]
- Pu, H.; Huang, Z.; Sun, D.-W.; Xie, X.; Zhou, W. Development of a Highly Sensitive Colorimetric Method for Detecting 17β-Estradiol Based on Combination of Gold Nanoparticles and Shortening DNA Aptamers. Water Air Soil Pollut. 2019, 230, 124. [Google Scholar] [CrossRef]
- Cennamo, N.; Zeni, L.; Tortora, P.; Regonesi, M.E.; Giusti, A.; Staiano, M.; D’Auria, S.; Varriale, A. A High Sensitivity Biosensor to Detect the Presence of Perfluorinated Compounds in Environment. Talanta 2018, 178, 955–961. [Google Scholar] [CrossRef]
- Park, J.; Yang, K.-A.; Choi, Y.; Choe, J.K. Novel ssDNA Aptamer-Based Fluorescence Sensor for Perfluorooctanoic Acid Detection in Water. Environ. Int. 2022, 158, 107000. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.M.; Berger, B.W. A Genetically-Encoded Biosensor for Direct Detection of Perfluorooctanoic Acid. Sci. Rep. 2023, 13, 15186. [Google Scholar] [CrossRef]
- Sunantha, G.; Vasudevan, N. A Method for Detecting Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Water Samples Using Genetically Engineered Bacterial Biosensor. Sci. Total Environ. 2021, 759, 143544. [Google Scholar] [CrossRef]
- Manogharan, M.; Dharshini, D.; Manaswini, G.; Murugesan, N.; Ganesan, S. Ganesan Genetically Engineered Bacterial Biosensor for Detection of PFOA and PFOS in Water Samples. Int. Res. J. Adv. Eng. Manag. IRJAEM 2024, 2, 1180–1183. [Google Scholar] [CrossRef]
- Nomngongo, P.N.; Catherine Ngila, J.; Msagati, T.A.M.; Gumbi, B.P.; Iwuoha, E.I. Determination of Selected Persistent Organic Pollutants in Wastewater from Landfill Leachates, Using an Amperometric Biosensor. Phys. Chem. Earth Parts ABC 2012, 50–52, 252–261. [Google Scholar] [CrossRef]
- Khesuoe, M.P.; Okumu, F.O.; Matoetoe, M.C. Development of a Silver Functionalised Polyaniline Electrochemical Immunosensor for Polychlorinated Biphenyls. Anal. Methods 2016, 8, 7087–7095. [Google Scholar] [CrossRef]
- Deng, F.; Pan, J.; Chen, M.; Liu, Z.; Chen, J.; Liu, C. Integrating CRISPR-Cas12a with Catalytic Hairpin Assembly as a Logic Gate Biosensing Platform for the Detection of Polychlorinated Biphenyls in Water Samples. Sci. Total Environ. 2023, 881, 163465. [Google Scholar] [CrossRef]
- Sun, K.; Huang, Q.; Meng, G.; Lu, Y. Highly Sensitive and Selective Surface-Enhanced Raman Spectroscopy Label-Free Detection of 3,3′,4,4′-Tetrachlorobiphenyl Using DNA Aptamer-Modified Ag-Nanorod Arrays. ACS Appl. Mater. Interfaces 2016, 8, 5723–5728. [Google Scholar] [CrossRef]
- Cheng, R.; Liu, S.; Shi, H.; Zhao, G. A Highly Sensitive and Selective Aptamer-Based Colorimetric Sensor for the Rapid Detection of PCB 77. J. Hazard. Mater. 2018, 341, 373–380. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, J.; Huo, B.; Yuan, S.; Zhang, M.; Sun, X.; Peng, Y.; Li, S.; Wang, J.; Ning, B.; et al. Upconversion Fluorescent Aptasensor for Polychlorinated Biphenyls Detection Based on Nicking Endonuclease and Hybridization Chain Reaction Dual-Amplification Strategy. Anal. Chem. 2018, 90, 9936–9942. [Google Scholar] [CrossRef]
- Jackson, J.; Sutton, R. Sources of Endocrine-Disrupting Chemicals in Urban Wastewater, Oakland, CA. Sci. Total Environ. 2008, 405, 153–160. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef]
- Ribeiro, E.; Ladeira, C.; Viegas, S. EDCs Mixtures: A Stealthy Hazard for Human Health? Toxics 2017, 5, 5. [Google Scholar] [CrossRef]
- Darbre, P.D. How Could Endocrine Disrupters Affect Human Health? In Endocrine Disruption and Human Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 31–56. ISBN 978-0-12-821985-0. [Google Scholar]
- Metcalfe, C.D.; Bayen, S.; Desrosiers, M.; Muñoz, G.; Sauvé, S.; Yargeau, V. An Introduction to the Sources, Fate, Occurrence and Effects of Endocrine Disrupting Chemicals Released into the Environment. Environ. Res. 2022, 207, 112658. [Google Scholar] [CrossRef]
- Archer, E.; Wolfaardt, G.M.; Van Wyk, J.H. Review: Pharmaceutical and Personal Care Products (PPCPs) as Endocrine Disrupting Contaminants (EDCs) in South African Surface Waters. Water SA 2017, 43, 684. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yao, B.; Zhi, D.; Luo, L.; Zhou, Y. Endocrine Disrupting Chemicals in the Environment: Environmental Sources, Biological Effects, Remediation Techniques, and Perspective. Environ. Pollut. 2022, 310, 119918. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Widespread Occurrence of Bisphenol A in Paper and Paper Products: Implications for Human Exposure. Environ. Sci. Technol. 2011, 45, 9372–9379. [Google Scholar] [CrossRef] [PubMed]
- Markets, R. Global Bisphenol-A Market to Grow 5.17% by 2020-Low Oil Prices Affecting Upstream Value Chain-Research and Markets. Available online: https://www.prnewswire.com/news-releases/global-bisphenol-a-market-to-grow-517-by-2020---low-oil-prices-affecting-upstream-value-chain---research-and-markets-300296021.html (accessed on 27 October 2024).
- Vega, D.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical Detection of Phenolic Estrogenic Compounds at Carbon Nanotube-Modified Electrodes. Talanta 2007, 71, 1031–1038. [Google Scholar] [CrossRef]
- Bravo, I.; Prata, M.; Torrinha, Á.; Delerue-Matos, C.; Lorenzo, E.; Morais, S. Laccase Bioconjugate and Multi-Walled Carbon Nanotubes-Based Biosensor for Bisphenol A Analysis. Bioelectrochemistry 2022, 144, 108033. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Cui, J.; Wang, Y.; Jia, J. An Ultrasensitive Electrochemical Biosensor for Bisphenol A Based on Aptamer-Modified MrGO@AuNPs and ssDNA-Functionalized AuNP@MBs Synergistic Amplification. Chemosphere 2023, 311, 137154. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-S.; Choo, K.-H.; Lee, B.; Choi, S.-J. The Methods of Identification, Analysis, and Removal of Endocrine Disrupting Compounds (EDCs) in Water. J. Hazard. Mater. 2009, 172, 1–12. [Google Scholar] [CrossRef]
- Singh, A.C.; Bacher, G.; Bhand, S. A Label Free Immunosensor for Ultrasensitive Detection of 17b-Estradiol in Water. Electrochim. Acta 2017, 232, 30–37. [Google Scholar] [CrossRef]
- Yildirim, N.; Long, F.; Gao, C.; He, M.; Shi, H.-C.; Gu, A.Z. Aptamer-Based Optical Biosensor for Rapid and Sensitive Detection of 17β-Estradiol in Water Samples. Available online: https://pubs.acs.org/doi/abs/10.1021/es203624w (accessed on 21 August 2024).
- Zhu, M.; Yuan, Y.; Yin, H.; Guo, Z.; Wei, X.; Qi, X.; Liu, H.; Dang, Z. Environmental Contamination and Human Exposure of Polychlorinated Biphenyls (PCBs) in China: A Review. Sci. Total Environ. 2022, 805, 150270. [Google Scholar] [CrossRef] [PubMed]
- Alsefri, S.; Balbaied, T.; Albalawi, I.; Alatawi, H.; Moore, E. A Novel Label-Free Electrochemical Immunosensor Based on a Self-Assembled Monolayer-Modified Electrode for Polychlorinated Biphenyl (PCB) in Environmental Analysis. Electrochem 2022, 3, 451–462. [Google Scholar] [CrossRef]
- Sarti, C.; Sforzi, L.; Martellini, T.; Cincinelli, A. Status and Trends of Biosensor Technologies for Environmental Monitoring of Brominated Flame Retardants. Front. Anal. Sci. 2025, 5, 1527655. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, X.; Gyimah, E.; Bu, Y.; Meng, H.; Zhang, Z. Chemiluminescence Imaging Immunoassay for Simultaneous Determination of TBBPA-DHEE and TBBPA-MHEE in Aquatic Environments. Anal. Bioanal. Chem. 2020, 412, 3673–3681. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Bischel, H.N.; MacManus-Spencer, L.A.; Luthy, R.G. Noncovalent Interactions of Long-Chain Perfluoroalkyl Acids with Serum Albumin. Environ. Sci. Technol. 2010, 44, 5263–5269. [Google Scholar] [CrossRef]
- Sheng, N.; Cui, R.; Wang, J.; Guo, Y.; Wang, J.; Dai, J. Cytotoxicity of Novel Fluorinated Alternatives to Long-Chain Perfluoroalkyl Substances to Human Liver Cell Line and Their Binding Capacity to Human Liver Fatty Acid Binding Protein. Arch. Toxicol. 2018, 92, 359–369. [Google Scholar] [CrossRef]
- Sheng, N.; Li, J.; Liu, H.; Zhang, A.; Dai, J. Interaction of Perfluoroalkyl Acids with Human Liver Fatty Acid-Binding Protein. Arch. Toxicol. 2016, 90, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ren, X.-M.; Guo, L.-H. Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein. Environ. Sci. Technol. 2013, 47, 11293–11301. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.E. Biosensors: Ethical, Regulatory, and Legal Issues. In Handbook of Cell Biosensors; Thouand, G., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 679–705. ISBN 978-3-030-23216-0. [Google Scholar]
- Song, M.; Lin, X.; Peng, Z.; Xu, S.; Jin, L.; Zheng, X.; Luo, H. Materials and Methods of Biosensor Interfaces With Stability. Front. Mater. 2021, 7, 583739. [Google Scholar] [CrossRef]
- Kucherenko, I.S.; Soldatkin, O.O.; Kucherenko, D.Y.; Soldatkina, O.V.; Dzyadevych, S.V. Advances in Nanomaterial Application in Enzyme-Based Electrochemical Biosensors: A Review. Nanoscale Adv. 2019, 1, 4560–4577. [Google Scholar] [CrossRef]
- Hao, R.; Liu, L.; Yuan, J.; Wu, L.; Lei, S. Recent Advances in Field Effect Transistor Biosensors: Designing Strategies and Applications for Sensitive Assay. Biosensors 2023, 13, 426. [Google Scholar] [CrossRef] [PubMed]
- Ravariu, C.; Parvulescu, C.C.; Manea, E.; Tucureanu, V. Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer. Biosensors 2021, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for Biosensing Applications: A Review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Saxena, U.; Das, A.B. Nanomaterials towards Fabrication of Cholesterol Biosensors: Key Roles and Design Approaches. Biosens. Bioelectron. 2016, 75, 196–205. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors—A Review. Nanomaterials 2023, 13, 760. [Google Scholar] [CrossRef]
- Tong, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sens. 2022, 7, 3947–3955. [Google Scholar] [CrossRef]
- Chen, M.-M.; Zhang, Y.-Q.; Cheng, L.-C.; Zhao, F.-J.; Wang, P. Machine Learning-Powered Fluorescent Sensor Arrays for Rapid Detection of Heavy Metals and Pesticides in Complex Environments. Biosens. Bioelectron. 2025, 287, 117706. [Google Scholar] [CrossRef] [PubMed]
- He, N. A Sensitive, Portable, and Smartphone-Based Whole-Cell Biosensor Device for Salicylic Acid Monitoring. Biosens. Bioelectron. 2024, 257, 116329. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhang, H.; Pan, Y.; Yang, Z. Biosensors for Wastewater-Based Epidemiology for Monitoring Public Health. Water Res. 2021, 191, 116787. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhang, H.; Yang, Z. An Integrated Biosensor System with Mobile Health and Wastewater-Based Epidemiology (iBMW) for COVID-19 Pandemic. Biosens. Bioelectron. 2020, 169, 112617. [Google Scholar] [CrossRef] [PubMed]
Biosensing Element | ECs | Transducer | Detection Limit | Detection Range | Response Time | References | |
---|---|---|---|---|---|---|---|
Enzyme-based biosensors | |||||||
Phosphorylated acetylcholinesterase (AChE) | Organophosphorus pesticides | Electrochemical | 0.05–2.03 nM | 2.85–1 × 104 nM | 20 min | [54] | |
Dichlorovos | / | 0.0087–0.029 nM | 0.0716–2.08 nM | / | [55] | ||
Chlorpyrifos | / | 0.0014–0.0046 nM | 0.0358–0.711 nM | / | |||
Paraxon | Amperometric | 7.27 nM | up to 14.54 nM | / | [56] | ||
Parathion | Electrochemical | 4.9 × 10−13 M | 10−12–10−6 M | 10 min | [57] | ||
Dichlorvos | Amperometric | 13.734–31.676 nM | 16–28 nM | 4 min | [58] | ||
Monocrotophs | |||||||
Parathion | |||||||
Chlorpyrifos | Amperometric | 0.057 nM | 0.1426–285.17 nM | 15 min | [59] | ||
Butyrylcholinesterase (BChE) | Paraoxon | Electrochemical | 18 nM | Up to 100 nM | / | [60] | |
Kidney bean esterase (KdBE) | Chlorpyrifos | Electrochemical | 9.98 nM | 28.52–1.4 × 106 nM | 15 min | [61] | |
Dehydrohalogenase | 1,1,1-trichloro-2,2-bis (ρ-chlorophenyl) ethane (DDT), Hexachlorocyclohexane (HCH) | Electrochemical | / | 0.01–12 mM | 10 to 15 min | [62] | |
Antibody/antigen-based biosensors (Immunosensors) | |||||||
Anti-chlorpyrifos | Chlorpyrifos | Field effect transistors | 1.8 fM | 1 fM–1 μM | / | [63] | |
Anti-imidacloprid | Imidacloprid | Chronoamperometric | 22 pM | 50–10,000 pM | 60 s | [64] | |
Anti-triazophos | Triazophos | Fluorescence | 0.0223 nM | 0.032–63.84 nM | 150 min | [65] | |
Anti-parathion | Parathion | Fluorescence | 0.031 nM | 0.1717–171.6752 nM | 150 min | ||
Anti-chlorpyrifos | Chlorpyrifos | Fluorescence | 0.2481 nM | 1.4264–2851.7 nM | 150 min | ||
Anti-carbofuran (monoclonal antibody) and Anti-3-hydroxycarbofuran (monoclonal antibody) | Carbofuran and 3Hydroxycarbofuran | Lateral flow immunochromatography assay | 29.5–45.2 nM | 0–90.4 nM | 5 min | [66] | |
Nucleic acid-based biosensors (Aptasensors) | |||||||
Three Single-stranded DNAs (ssDNA) | Acetamiprid | Fluorescence | 5.73 nM | 0–500 nM | / | [67] | |
Complementary Strands 1/Complementary Strands 2-FAM/Complementary Strands 3-AuNPs/Aptamer | Acetamiprid | Fluorescence | 2.8 nM | 5 50 nM | / | [68] | |
Fourier transform infrared (FT-IR) spectra: Cationic carbon dots (cCDs) | Acetamiprid | Fluorescence | 0.3 nM | 1.6–20 nM | 30 min | [69] | |
Rhodamine B/Aggregation of AuNPs | Carbendazim | Fluorescence | 2.33 nM | 2.33–800 nM | / | [70] | |
Whole cell-based biosensors | |||||||
An Escherichia coli strain carrying a chpR expression vector and a chpA promoter eatsBA transcriptional fusion plasmid encoding sulfatase (atsA) and formylglycine generating enzyme (atsB) from Klebsiella sp. | Chlorpyrifos | Fluorescence | / | 25–500 nM | / | [71] | |
Escherihia coli | Paraoxon | Electrochemical | 9 nM | 0.05–25 μM | / | [72] | |
Parathion | 10 nM | 0.05–25 μM | / | ||||
Methylparathion | 15 nM | 0.08–30 μM | / | ||||
Lindane | Electrochemical | / | 0.0069–0.1547 nM t | / | [73] | ||
Streptomyces strain M7 | Lindane | Electrochemical | 412.61 nM | / | 2 days | [74] | |
Escherihia coli SM003 | Atrazine | Fluorescence | 1.08 μM | 1.08–15 μM | / | [75] | |
Escherihia coli SM003 | Cyanuric Acid | Fluorescence | 7.83 μM | 7.83 μM–2.89 mM | / | ||
Escherihia coli SM004 | Cyanuric Acid | Fluorescence | 0.22 μM | 0.22–15 μM | / |
Biosensing Element | ECs | Transducer | Detection Limit | Detection Range | Response Time | References | |
---|---|---|---|---|---|---|---|
Enzyme-based biosensors | |||||||
Laccase | Paracetamol | Optical | 0.55 × 10−6 M | 2–14 μM | 20 s | [114] | |
Penicillinase | penicillin G | Amperometric | 4.5 nM | 10–50 nM | / | [115] | |
Tyrosinase | Methimazole | Amperometric electrochemical | 0.004–0.006 μM | 0.01–10 μM | 20 s | [116] | |
Captopril | 0.008–0.019 μM | 0.05–15 μM | / | [117] | |||
Monoamine oxidase | Imipramine | Amperometric | 7 × 10−9 M | 1 × 10−8–5 × 10−5 M | / | [118] | |
Amitriptyline | 8 × 10−9 M | ||||||
Antibody/antigen-based biosensors (Immunosensors) | |||||||
Anti-sulfamethazine monoclonal antibody | Sulfamethazine | Electrochemical | 0.43 nM | 1.19–229.25 nM | 30 min | [119] | |
Anti-penicillin monoclonal antibody (antiP) | Penicillin G | Amperometric | 0.2 nM | 0.5–5.98 × 104 nM | 45–55 min | [120] | |
Anti-ampicillin, monoclonal antibody | Ampicillin | Direct-flow surface plasmon resonance | 0.25 nM | 0.5–9.988 × 10−2 nM | 15 min | [121] | |
Anti-chloramphenicol, monoclonal antibody | Chloramphenicol | Amperometric | 0.0145 nM | 0.03–31 nM | 30 min | [122] | |
Anti-tetracycline monoclonal antibody | Tetracycline | Electrochemical | 0.18–2.25 nM | 0.0722 nM | 20 min | [123] | |
Anti-tetracycline | Tetracycline | Electrochemical | 10−6–10−14 M | 3.8 × 10−15 M | / | [124] | |
Anti-kanamycin | Kanamycin | Electrochemical | 0.1–33 nM | 0.03 nM | / | [125] | |
Nucleic acid-based biosensors (Aptasensors) | |||||||
Non-cross-linking deaggregation of AuNPs coated with a polyadenine-modified aptamer | Chloramphenicol | Colorimetric | 22 nM | 0.19–3.19 nM | 30 min | [126] | |
Quenching of FAM-labeled aptamer by target-responsive GO hydrogel | Oxytetracycline | Fluorescence | 5.43 × 104 nM | 5.43 × 104–2.17 × 106 nM | / | [127] | |
Utilization of AuNPs modified magnetic beads and fi nicking enzyme | Ampicillin | Fluorescence | 0.2 nM | 0.29–286 nM | / | [128] | |
Salt-induced aggregation of AuNPs in the presence of target | Oxytetracycline | Colorimetric | 10 nM | 25–2500 nM | / | [129] | |
Thiols modified aptamer and methacrylic acid | Kanamycin | Fluorescence | 26.8 nM | 103–2 × 104 nM | 25 min | [130] | |
AuNPs functionalized with the hemin/Gquadruplex DNAzyme and cDNA | Chloramphenicol | Colorimetric | 402 nM | 3.1 × 10−3–309 nM | 60 min | [131] | |
Whole cell-based biosensors | |||||||
Escherichia coli | Tetracycline | Filter paper strips | 11.76–38.47 nM | 168–2.2 × 104 nM | 90 min | [132] | |
11.7–79.4 nM | 168–1.6 × 105 nM | ||||||
Chlortetracycline | Fluorescence | 6.6 nM | / | 60 min | [133] | ||
Oxytetracycline | 9.33 nM | ||||||
Doxycycline | 7.154 nM | ||||||
Minocycline | 13.6 nM | ||||||
Metacycline | 10 nM | ||||||
Demeclocycline | 13.3 nM | ||||||
Tigecycline | 39 nM | ||||||
Tetracycline | 71 nM | ||||||
S. oneidensis | Ampicillin | Fluorescence | 73 nM | / | / | [134] |
ECs | Biosensing Element | Detected | Transducer | Detection Limit | Detection Range | References |
---|---|---|---|---|---|---|
EDCs | Antibody/antigen-based biosensors (Immunosensors) | |||||
Monoclonal antibodies of 17β-Estradiol | 17β-estradiol | Electrochemical | 0.4 × 10−3 nM | 0.4 × 10−3–0.73 nM | [171] | |
PDA NS/Mn:ZnCdS-anti-E2 | 17β-estradiol | Photoelectrochemical | 1.1 × 10−3 nM | 1.8 × 10−3–73 nM | [172] | |
Anti-DES | Diethylstilbestrol | Photoelectrochemical | 0.2 × 10−3 nM | 0.4 × 10−3–74 nM | [173] | |
Nucleic acid-based biosensors (Aptasensors) | ||||||
Raman reporter molecule Cy3 labeled E2-aptamer | 17β-estradiol | Surface-enhanced Raman scattering (SERS) | 2.75 fM | 1.0 × 10−13–1.0 × 10−9 M | [174] | |
Aptamer against BPA | Bisphenol A | Fluorometric | 3.3 nM | 10–900 nM | [175] | |
Aptamer against BPA | Bisphenol A | Electrochemiluminescence | 30 fM | 0.1 p1 nM | [176] | |
Shortening DNA aptamer | 17β-estradiol | Colorimetric | 0.1 nM | 0.2–5 nM | [177] | |
PFAS | Antibody/antigen-based biosensors (Immunosensors) | |||||
Mono-specific antibody against the PFOA | PFOA and PFOS | Optical fiber | 0.604 nM | / | [178] | |
Nucleic acid-based biosensors (Aptasensors) | ||||||
ssDNA aptamers | PFOA | Fluorometric | 0.17 μM | >5 μM | [179] | |
Whole cell-based biosensors | ||||||
Conjugating circularly permuted green fluorescent protein (cp.GFP) to a split-hLFABP construct | PFOA | Fluorometric | 330 ppb | / | [180] | |
Genetically engineered bacteria | PFOA and PFOS | Fluorometric | 0.314 nM | 0.02–2 nM | [181] | |
P. aeruginosa (PAO1) | PFOA and PFOS | Fluorometric | / | 0.02–24.14 nM | [182] | |
POPs | Enzyme-based biosensors | |||||
Horseradish peroxidase | Polybrominated diphenyl ethers-100 | Amperometric | 24.8 pM | 751–45745 pM | [183] | |
Polybrominated biphenyls-1 | 57.5 pM | 2.75–42.8 nM | ||||
Polychlorinated biphenyls-1 | 75.3 pM | 3.19–61.9 nM | ||||
Polychlorinated biphenyls-28 | 48.9 pM | 2.23–48 nM | ||||
Polychlorinated biphenyls-101 | 58.3 pM | 2.85–83.1 nM | ||||
Antibody/antigen-based biosensors (Immunosensors) | ||||||
Olyclonal anti-polychlorinated biphenyl (PCB) antibody | Polychlorinated biphenyls-28 | Electrochemical | 193 nM | 612–3674 nM | [184] | |
Nucleic acid-based biosensors (Aptasensors) | ||||||
BHQ-Cy5 modified single-stranded DNA | 3,3′,4,4′-tetrachlorobiphenyl | Fluorometric | 0.438 fM | 1.71 fM–171 μM | [185] | |
ssDNA aptamers | PCB-77 | Surface-enhanced Raman spectroscopy (SERS) | 3.3 × 10−8 M | 3.3 × 10−8–1.0 × 10−7 M | [186] | |
Aptamer | Polychlorinated biphenyls-77 | Colorimetric | 0.05 nM | 0.5–900 nM | [187] | |
Whole cell-based biosensors | ||||||
Two harpins (H1 and H2) were designed according to the partial complementary sequence (cDNA) of the PCB72/106 | PCB72 and PCB106 | Fluorescent | 8.86 pM and 9.68 pM | 10.1 pM–2.02 μM and 11.1 pM–2.21 μM | [188] |
Biological Receptors | Sensitivity | Selectivity | Stability | Cost | Toxicity Assessment | Broad-Spectrum Analysis |
---|---|---|---|---|---|---|
Enzymes | High | High | Low-Moderate | Low-Moderate | Poor | Moderate |
Antibodies | Very High | Very High | Moderate | High | Poor | Poor |
Aptamers | High | Very High | Very High | Low-Moderate | Poor | Poor |
Cells | Moderate | Moderate | Very High | High | Very High | Very High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Du, Z.; Li, Y.; Cao, L.; Zhu, B.; Kitaguchi, T.; Huang, C. A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment. Sensors 2025, 25, 4945. https://doi.org/10.3390/s25164945
Xiao Y, Du Z, Li Y, Cao L, Zhu B, Kitaguchi T, Huang C. A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment. Sensors. 2025; 25(16):4945. https://doi.org/10.3390/s25164945
Chicago/Turabian StyleXiao, Yi, Zhe Du, Yuqian Li, Lijia Cao, Bo Zhu, Tetsuya Kitaguchi, and Caihong Huang. 2025. "A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment" Sensors 25, no. 16: 4945. https://doi.org/10.3390/s25164945
APA StyleXiao, Y., Du, Z., Li, Y., Cao, L., Zhu, B., Kitaguchi, T., & Huang, C. (2025). A Review on the Application of Biosensors for Monitoring Emerging Contaminants in the Water Environment. Sensors, 25(16), 4945. https://doi.org/10.3390/s25164945