A Method for Measuring Angular Orientation with Adaptive Compensation of Dynamic Errors
Abstract
1. Introduction
2. Description of the Measurement Method and System for Measuring Roll and Pitch
Derivation of the Dynamic Model Determining the Angular Displacement of the Pendulum from the Vertical
3. Modeling and Tuning of the Elements of the Kalman Filter
3.1. Configuring the Basic Elements of the Kalman Filter
- is the state vector;
- is the state transition matrix defining the internal dynamics:
- is the vector of control impacts, the current values of which are measured by the AHRS mounted on the system body;
- is the matrix that connects the controlling influences on the state:
- represents stochastic noise in the process, which reflects dynamic indeterminacies and unpredictable influences on the system, and is assumed as a random magnitude with zero meaning and a covariance matrix , which defines the dispersion of this noise.
3.2. Configuring the Main Elements of the Correction Matrix
3.3. Setting Up the Matrix Defining the Variances of Errors in the Measurements R
3.4. Modeling and Tuning the Matrix Defining the Dispersions of the Model Errors Q
4. Results
Experimental Estimation of Dynamic Errors and Associated Uncertainty
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hessling, J.P. A novel method of evaluating dynamic measurement uncertainty utilizing digital filters. Meas. Sci. Technol. 2009, 20, 055106. [Google Scholar] [CrossRef]
- Kostoglotov, A.A.; Andrashitov, D.S.; Kornev, A.S.; Lazarenko, S.V. A method for synthesis of algorithms to estimate the dynamic error of measurement system software on the basis of the combined maximum principle. Meas. Tech. 2019, 62, 497–502. [Google Scholar] [CrossRef]
- Tomczyk, K.; Ostrowska, K.; Sładek, J.; Konieczny, J. The Levenberg–Marquardt Procedure for Modeling Accelerometers Used in the Energy Industry. Energies 2024, 17, 6072. [Google Scholar] [CrossRef]
- Tomczyk, K.; Kowalczyk, M. Accuracy Assessment of Charge-Mode Accelerometers Using Multivariate Regression of the Upper Bound of the Dynamic Error. Energies 2023, 16, 7784. [Google Scholar] [CrossRef]
- Tomczyk, K. Assessment of Convergence of the Algorithm for Determining the Upper Bound of Dynamic Error on the Example of Acceleration Sensors. In Proceedings of the 2019 20th International Conference on Research and Education in Mechatronics (REM), Vienna, Austria, 29–31 May 2019; pp. 1–6. [Google Scholar]
- Sbarbaro, D.; Johansen, T.A.; Yañez, J. Adaptive Kalman Filtering for Compensating External Effects in On-Line Spectroscopic Measurements. Sensors 2025, 25, 2513. [Google Scholar] [CrossRef]
- Huang, Q.; Gao, Z.W.; Liu, Y. Sensor Fault Reconstruction Using Robustly Adaptive Unknown-Input Observers. Sensors 2024, 24, 3224. [Google Scholar] [CrossRef]
- Ren, X.; Zhou, X.; Yu, S.; Wu, X.; Xiao, D. Frequency-modulated mems gyroscopes: A review. IEEE Sens. J. 2021, 21, 26426–26446. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Li, C.; Dean, R.N. Concepts, roadmaps and challenges of ovenized MEMS gyroscopes: A review. IEEE Sens. J. 2020, 21, 92–119. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Chen, J.; Li, A. A review of symmetric silicon MEMS gyroscope mode-matching technologies. Micromachines 2022, 13, 1255. [Google Scholar] [CrossRef]
- Ayazi, F.; Najafi, K. High aspect-ratio polysilicon micromachining technology. Sens. Actuators A Phys. 2001, 87, 46–51. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Hao, Y.; Chang, H. A Review on MEMS Silicon Resonant Accelerometers. J. Microelectromech. Syst. 2024, 33, 174–208. [Google Scholar] [CrossRef]
- Zhao, M.; Qi, Y.; Wang, H.; Xie, Z.; Li, B.; Wang, H.; Wei, X. Optical interferometric MEMS accelerometers. Laser Photonics Rev. 2024, 18, 2300713. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Y.; Wang, X.; Yao, Y.; Wang, X.; Huang, W. Review of micromachined optical accelerometers: From mg to sub-μg. Opto Electron. Adv. 2021, 4, 200045. [Google Scholar] [CrossRef]
- Akbaba, C.E.; Tanrıkulu, M.Y. MEMS Capacitive Accelerometer: A Review. Artıbilim Adana Alparslan Türkeş Bilim Teknol. Univ. Fen Bilim. Derg. 2023, 6, 41–58. [Google Scholar] [CrossRef]
- Fang, Z.; Yin, Y.; Chen, C.; Zhang, S.; Liu, Y.; Han, F. A Sensitive Micromachined Resonant Accelerometer for Moving-Base Gravimetry. Sens. Actuators A Phys. 2021, 325, 112694. [Google Scholar] [CrossRef]
- Khir, M.H.M.; Qu, P.; Qu, H. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass. Sensors 2011, 11, 7892–7907. [Google Scholar] [CrossRef]
- Mukherjee, R.; Basu, J.; Mandal, P.; Guha, P.K. A Review of Micromachined Thermal Accelerometers. J. Micromech. Microeng. 2017, 27, 123002. [Google Scholar] [CrossRef]
- Tomczyk, K.; Beńko, P. Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements. Energies 2022, 15, 7300. [Google Scholar] [CrossRef]
- Upadhyaya, A.M.; Hasan, M.K.; Abdel-Khalek, S.; Hassan, R.; Srivastava, M.C.; Sharan, P.; Islam, S.; Saad, A.M.E.; Vo, N. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application. Front. Public Health 2021, 9, 759032. [Google Scholar] [CrossRef]
- Solgaard, O.; Godil, A.A.; Howe, R.T.; Lee, L.P.; Peter, Y.A.; Zappe, H. Optical MEMS: From Micromirrors to Complex Systems. J. Microelectromech. Syst. 2014, 23, 517–538. [Google Scholar] [CrossRef]
- Tomczyk, K.; Beńko, P.; Ostrowska, K. Maximum Energy Density for Evaluation of the Dynamic Accuracy of LVDT Sensors Applied in the Energy Industry. Energies 2024, 17, 5525. [Google Scholar] [CrossRef]
- Sergiyenko, O.Y.; Tyrsa, V.V. 3D optical machine vision sensors with intelligent data management for robotic swarm navigation improvement. IEEE Sens. J. 2020, 21, 11262–11274. [Google Scholar] [CrossRef]
- Hu, B.; Liu, X.; Jing, Q.; Lyu, H.; Yin, Y. Estimation of berthing state of maritime autonomous surface ships based on 3D LiDAR. Ocean Eng. 2022, 251, 111131. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Meng, H.; Zhang, W.; Huang, G. A LiDAR Point Clouds Dataset of Ships in a Maritime Environment. IEEE/CAA J. Autom. Sin. 2024, 11, 1681–1694. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 2001, 38, 25–61. [Google Scholar] [CrossRef]
- Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 1997, 78, 2046–2049. [Google Scholar] [CrossRef]
- Abdolkarimi, E.S.; Mosavi, M.R. A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments. GPS Solut. 2020, 24, 108. [Google Scholar] [CrossRef]
- Abdolkarimi, E.S.; Mosavi, M.R. A modified neuro-fuzzy system for accuracy improvement of low-cost MEMS-Based INS/GPS navigation system. Wirel. Pers. Commun. 2023, 129, 1369–1392. [Google Scholar] [CrossRef]
- Mohamed, H.G.; Khater, H.A.; Moussa, K.H. An intelligent combined visual navigation brain model/GPS/MEMS–INS/ADSFCF method to develop vehicle independent guidance solutions. Micromachines 2021, 12, 718. [Google Scholar] [CrossRef]
- Samatas, G.G.; Pachidis, T.P. Inertial measurement units (imus) in mobile robots over the last five years: A review. Designs 2022, 6, 17. [Google Scholar] [CrossRef]
- Nazarahari, M.; Rouhani, H. Sensor fusion algorithms for orientation tracking via magnetic and inertial measurement units: An experimental comparison survey. Inf. Fusion 2021, 76, 8–23. [Google Scholar] [CrossRef]
- Tafrishi, S.A.; Svinin, M.; Yamamoto, M. A motion estimation filter for inertial measurement unit with on-board ferromagnetic materials. IEEE Robot. Autom. Lett. 2021, 6, 4939–4946. [Google Scholar] [CrossRef]
- Klūga, J.; Grabs, E.; Chen, T.; Ancāns, A.; Stetjuha, M.; Rjazanovs, D.; Ipatovs, A. Motion Sensors Data Fusion for Accurate Measurement in AHRS Systems. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024. [Google Scholar]
- Martins, J.G.; Petry, M.R.; Moreira, A.P. Assessment of the influence of magnetic perturbations and dynamic motions in a commercial AHRS. In Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar, Portugal, 26–27 April 2023; pp. 175–180. [Google Scholar]
- Munarto, R.; Wiryadinata, R.; Utama, D.P. Implementation of AHRS (Attitude Heading and Reference Systems) With Madgwick Filter as Hexapods Robot Navigation. In Proceedings of the 2022 International Conference on Informatics Electrical and Electronics (ICIEE), Yogyakarta, Indonesia, 5–7 October 2022. [Google Scholar]
- Komarizadehasl, S.; Komary, M.; Alahmad, A.; Lozano-Galant, J.A.; Ramos, G.; Turmo, J. A novel wireless low-cost inclinometer made from combining the measurements of multiple MEMS gyroscopes and accelerometers. Sensors 2022, 22, 5605. [Google Scholar] [CrossRef]
- Yuen, K.V.; Liu, Y.S.; Yan, W.J. Estimation of time-varying noise parameters for unscented Kalman filter. Mech. Syst. Signal Process. 2022, 180, 109439. [Google Scholar] [CrossRef]
- Liu, M.; Niu, J.; Liu, Y. UKF-MOT: An unscented Kalman filter-based 3D multi-object tracker. CAAI Trans. Intell. Technol. 2024, 9, 1031–1041. [Google Scholar] [CrossRef]
- Ge, Q.; Ma, Z.; Lu, Z.; Feng, X. Fault-Tolerant Cubature Kalman Filter for Engineering Estimation Control Systems. IEEE Trans. Cybern. 2024, 54, 3943–3953. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Liu, S. Improved Robust High-Degree Cubature Kalman Filter Based on Novel Cubature Formula and Maximum Correntropy Criterion with Application to Surface Target Tracking. J. Mar. Sci. Eng. 2022, 10, 1070. [Google Scholar] [CrossRef]
- Peng, R.D. Time Series Analysis and Its Applications: With R Examples; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Strang, G. Introduction to Linear Algebra, 5th ed.; Wellesley-Cambridge Press: Wellesley, MA, USA, 2016. [Google Scholar]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- JCGM 100:2008; Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology: Sèvres, France, 2008.
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
Operating Mode | Amplitude | Frequency | Description |
---|---|---|---|
Pure harmonic motion | 10° | 1 Hz | Sinusoidal motion, a basic test for system analysis under regular oscillations |
Harmonic motion with high frequency | 5° | 5 Hz | This mode simulates angular oscillations of a moving object at a higher frequency. This item is to evaluate the system’s ability to track rapid changes in motion dynamics while maintaining measurement accuracy. |
Harmonic motion with added horizontal vibrations | 5° (main); 1 mm (horizontal vibrations) | 1.5 Hz (main); 5 Hz (added vibrations) | Conditions are simulated where the system is subjected to external vibrations, as is often the case in real applications, such as the stabilizing of platforms onto vehicles, ships, or aircraft. High-frequency horizontal vibrations reflect the influence of mechanical disturbances that may impair measurement accuracy. This test allows the system’s resistance to such impacts to be assessed. |
Movement in the form of a random signal | ≤8° | ≤5 Hz | Random movements are reproduced, typical of dynamic environments with abrupt disturbances, such as turbulences in aircraft, the effects of waves on sea vessels, or sudden changes in the trajectory of vehicles. |
Operating Mode | Maximum Error [Arcmin] Proposed/AHRS | Average Error Value [Arcmin] Proposed/AHRS | RMS Deviation [Arcmin] Proposed/AHRS |
---|---|---|---|
Pure Harmonic Motion | 3.9/4.6 | 0.21/0.25 | 1.3/1.56 |
High-Frequency Harmonic Motion | 4.4/8.9 | 0.16/0.29 | 1.46/2.9 |
Motion with Horizontal Vibrations | 6.9/24.8 | 0.24/0.29 | 2.3/8.4 |
Random Signal Motion | 9.5/28.8 | 0.68/0.15 | 3.1/9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dichev, D.; Zhelezarov, I.; Georgiev, B.; Karadzhov, T.; Dicheva, R.; Hasanov, H. A Method for Measuring Angular Orientation with Adaptive Compensation of Dynamic Errors. Sensors 2025, 25, 4922. https://doi.org/10.3390/s25164922
Dichev D, Zhelezarov I, Georgiev B, Karadzhov T, Dicheva R, Hasanov H. A Method for Measuring Angular Orientation with Adaptive Compensation of Dynamic Errors. Sensors. 2025; 25(16):4922. https://doi.org/10.3390/s25164922
Chicago/Turabian StyleDichev, Dimitar, Iliya Zhelezarov, Borislav Georgiev, Tsanko Karadzhov, Ralitza Dicheva, and Hasan Hasanov. 2025. "A Method for Measuring Angular Orientation with Adaptive Compensation of Dynamic Errors" Sensors 25, no. 16: 4922. https://doi.org/10.3390/s25164922
APA StyleDichev, D., Zhelezarov, I., Georgiev, B., Karadzhov, T., Dicheva, R., & Hasanov, H. (2025). A Method for Measuring Angular Orientation with Adaptive Compensation of Dynamic Errors. Sensors, 25(16), 4922. https://doi.org/10.3390/s25164922