A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs
Abstract
1. Introduction
2. Analysis of the Temperature-Dependent Characteristics of Parameters During the Current Fall Phase
2.1. Structure and Equivalent Circuit Model of SiC MOSFETs
2.2. Modeling of the Drain Current Fall Phase
2.3. Temperature-Dependent Characteristics Analysis of tfi and Efi During the Current Fall Phase
2.4. Simulation Analysis of Temperature-Dependent Characteristics
3. Junction Temperature Estimation Method Based on MLR During the Current Fall Phase of SiC MOSFETs
4. Experimental Validation
4.1. Experimental Platform
4.2. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.; Laird, I.; Walder, S. Opportunities, Challenges, and Potential Solutions in the Application of Fast-Switching SiC Power Devices and Converters. IEEE Trans. Power Electron. 2021, 36, 3925–3945. [Google Scholar] [CrossRef]
- Iannaccone, G.; Sbrana, C.; Morelli, I.; Strangio, S. Power Electronics Based on Wide-Bandgap Semiconductors: Opportunities and Challenges. IEEE Access. 2021, 9, 139446–139456. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, Y.; Yan, W. Behavioral Modeling of SiC MOSFET Static and Dynamic Characteristics Based on Particle Swarm Optimization Algorithm. IEEE Access. 2025, 13, 66994–67005. [Google Scholar] [CrossRef]
- Sun, P.; Guo, Y.; Wu, T.; Zhao, Z.; Lai, P.; Chen, Z. An Online Junction Temperature Monitoring Correction Method for SiC MOSFETs at Different Parasitic Parameters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5007–5018. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Yang, Q.; Yang, F.; Gan, Y.; Zhang, H. Investigation and Comparison of Temperature-Sensitive Electrical Parameters of SiC mosfet at Extremely High Temperatures. IEEE Trans. Power Electron. 2023, 38, 9660–9672. [Google Scholar] [CrossRef]
- Wang, B.; Cai, J.; Du, X.; Zhou, L. Review of power semiconductor device reliability for power converters. CPSS Trans. Power Electron. Appl. 2017, 2, 101–117. [Google Scholar] [CrossRef]
- Alatise, O.; Parker-Allotey, N.-A.; Mawby, P. Modeling the Electrothermal Stability of Power MOSFETs During Switching Transients. IEEE Electron Device Lett. 2012, 33, 1039–1041. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P. An Online Junction Temperature Monitoring Method for SiC MOSFETs Based on a Novel Gate Conduction Model. IEEE Trans. Power Electron. 2021, 36, 11087–11096. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, X.; Yin, S.; Tu, C.; Huang, S. Simplified Junction Temperature Estimation using Integrated NTC Sensor for SiC Modules. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–4. [Google Scholar]
- Hosseinabadi, F.; Chakraborty, S.; Bhoi, S.K.; Prochart, G.; Hrvanovic, D.; Hegazy, O. A Comprehensive Overview of Reliability Assessment Strategies and Testing of Power Electronics Converters. IEEE Open J. Ind. Appl. Soc. Power Electron. 2024, 5, 473–512. [Google Scholar] [CrossRef]
- Tamdogan, E.; Pavlidis, G.; Graham, S.; Arik, M. A Comparative Study on the Junction Temperature Measurements of LEDs With Raman Spectroscopy, Microinfrared (IR) Imaging, and Forward Voltage Methods. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1914–1922. [Google Scholar] [CrossRef]
- Zhang, J.; Du, X.; Yu, Y.; Zheng, S.; Sun, P.; Tai, H.-M. Thermal Parameter Monitoring of IGBT Module Using Junction Temperature Cooling Curves. IEEE Trans. Ind. Electron. 2019, 66, 8148–8160. [Google Scholar] [CrossRef]
- Hu, Z.; Du, M.; Wei, K.; Hurley, W.G. An Adaptive Thermal Equivalent Circuit Model for Estimating the Junction Temperature of IGBTs. IEEE J. Emerging Sel. Top. Power Electron. 2019, 7, 392–403. [Google Scholar] [CrossRef]
- Yu, Y.; Du, X.; Zhang, J.; Sun, P.; Tai, H.-M. Condition monitoring the thermal path degradation of IGBT module using the time constants of junction temperature cooling curves. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 358–361. [Google Scholar]
- Gonzalez, J.O.; Alatise, O. Challenges of Junction Temperature Sensing in SiC Power MOSFETs. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 891–898. [Google Scholar]
- Cao, H.; Ning, P.; Yuan, T.; Wen, X. Online Monitoring of IGBT junction Temperature Based on Vce Measuremnt. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Qiao, L.; Wang, F.; Dyer, J.; Zhang, Z. Online Junction Temperature Monitoring for SiC MOSFETs Using Turn-On Delay Time. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 1526–1531. [Google Scholar]
- Gonzalez, J.O.; Alatise, O.; Hu, J.; Ran, L.; Mawby, P.A. An Investigation of Temperature-Sensitive Electrical Parameters for SiC Power MOSFETs. IEEE Trans. Power Electron. 2017, 32, 7954–7966. [Google Scholar] [CrossRef]
- Zeng, G.; Cao, H.; Chen, W.; Lutz, J. Difference in Device Temperature Determination Using p-n-Junction Forward Voltage and Gate Threshold Voltage. IEEE Trans. Power Electron. 2019, 34, 2781–2793. [Google Scholar] [CrossRef]
- Du, M.; Liu, F.; Yin, J.; Dong, C. Ouyang. Junction Temperature Correction Method for SiC MOSFET Based on Turn-Off Oscillation Frequency of Drain-Source Voltage. IEEE Trans. Electron Devices. 2024, 71, 6208–6215. [Google Scholar] [CrossRef]
- Baker, N.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. Online junction temperature measurement using peak gate current. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 1270–1275. [Google Scholar]
- Baker, N.; Dupont, L.; Munk-Nielsen, S.; Iannuzzo, F.; Liserre, M. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current. IEEE Trans. Power Electron. 2017, 32, 3099–3111. [Google Scholar] [CrossRef]
- Zhang, Z.; Dyer, J.; Wu, X.; Wang, F.; Costinett, D.; Tolbert, L.M. Online Junction Temperature Monitoring Using Intelligent Gate Drive for SiC Power Devices. IEEE Trans. Power Electron. 2019, 34, 7922–7932. [Google Scholar] [CrossRef]
- Yang, F.; Pu, S.; Xu, C.; Akin, B. Turn-on Delay Based Real-Time Junction Temperature Measurement for SiC MOSFETs With Aging Compensation. IEEE Trans. Power Electron. 2021, 36, 1280–1294. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Shi, X.; Liu, Q.; Zhang, S.; Ouyang, R. Online Junction Temperature Estimation for SiC MOSFETs Using Drain Voltage Falling Edge Time. IEEE Trans. Electron Devices. 2023, 70, 5228–5235. [Google Scholar] [CrossRef]
- Shao, L.; Xu, G.; Hu, Y. On the Junction Temperature Extraction Approach With a Hybrid Model of Voltage-Rise Time and Voltage-Rise Loss. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 1489–1496. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Wu, H. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Phys. Sin. 2005, 54, 2918–2923. [Google Scholar]
Parameter | Value |
---|---|
Bus Voltage VDC (V) | 600 |
Load Current IL (A) | 10–30 |
Load Inductance Lload (μH) | 460 |
Gate Drive Voltage VDRV (V) | +18/−3 |
External Gate Resistor RG(ext) (Ω) | 4.5 |
Internal Gate Resistor RG(int) (Ω) | 10.5 |
Loop Stray Resistance Rloop (Ω) | 0.1 |
Source Parasitic Inductance LS (nH) | 10 |
Gate Parasitic Inductance LG (nH) | 15 |
Drain Parasitic Inductance LD (nH) | 20 |
Parameter | Value |
---|---|
Bus Voltage VDC (V) | 600 |
Load Current IL (A) | 10–30 |
Load Inductance Lload (μH) | 460 |
Gate Drive Voltage VDRV (V) | +18/−3 |
External Gate Resistor RG(ext) (Ω) | 4.5 |
Internal Gate Resistor RG(int) (Ω) | 10.5 |
3D Model | Goodness of Fit R2 |
---|---|
tfi-Tj-IL | 88.88% |
Efi-Tj-IL | 28.91% |
Tj-tfi-Efi | 94.11% |
toff-Tj-IL | 73.53% |
Eoff-Tj-IL | 45.95% |
Tj-toff-Eoff | 75.41% |
TSEP | Ref. | Device | Linearity | Real-Time Implementation | Properties |
---|---|---|---|---|---|
Gate resistance | [18,21] | MOSFET/IGBT | Medium | Medium | Highly susceptible to noise. |
Turn-on/off delay time | [19,25,26] | MOSFET/IGBT | Good | Hard | A large gate resistance needs to achieve detectable resolution. |
Turn-on/off di/dt | [20] | MOSFET | Low | Hard | Needs very high detection resolution and accuracy. |
On-resistance | [22] | MOSFET | Medium | Easy | An additional high-precision drain-source voltage sensing circuit is required. |
Gate turn-on peak current | [23,24] | MOSFET | Medium | Hard | Good for slow switching application. |
Voltage rise time and voltage rise loss | [28] | IGBT | Medium | Medium | When applied to MOSFETs, the linearity is insufficient, resulting in a lower goodness of fit for the model. |
The proposed method | / | MOSFET | Good | Medium | When applied to MOSFETs, the linearity is better, leading to a higher goodness of fit for the model. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Zhang, Y.; Zeng, Y.; Kang, Y.; Zhu, Z.; Wu, F. A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs. Sensors 2025, 25, 4828. https://doi.org/10.3390/s25154828
Qin H, Zhang Y, Zeng Y, Kang Y, Zhu Z, Wu F. A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs. Sensors. 2025; 25(15):4828. https://doi.org/10.3390/s25154828
Chicago/Turabian StyleQin, Haihong, Yang Zhang, Yu Zeng, Yuan Kang, Ziyue Zhu, and Fan Wu. 2025. "A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs" Sensors 25, no. 15: 4828. https://doi.org/10.3390/s25154828
APA StyleQin, H., Zhang, Y., Zeng, Y., Kang, Y., Zhu, Z., & Wu, F. (2025). A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs. Sensors, 25(15), 4828. https://doi.org/10.3390/s25154828