Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
Abstract
1. Introduction
2. Simulation Setup
2.1. Structure of Small-Pitch 3D Pixel Sensors
2.2. Simulation Approach
3. Geometrical Effects of p-Stop Configurations
3.1. Influence of p-Stop Position
3.2. Influence of p-Stop Width
4. Characteristics of p-Spray Isolation
5. Experimental Validation of Simulation Results
5.1. Simulations Including the Effect of Column Tips
5.2. Comparison with Experimental Results
6. Impact of Different Isolations on the Capacitance
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Large Hadron Collider (LHC). Available online: https://home.cern/science/accelerators/large-hadron-collider (accessed on 15 July 2025).
- High Luminosity Large Hadron Collider (HL-LHC). Available online: https://www.home.cern/science/accelerators/high-luminosity-lhc (accessed on 15 July 2025).
- Parker, S.I.; Kenney, C.J.; Segal, J. 3D—A Proposed New Architecture for Solid-State Radiation Detectors. Nucl. Instrum. Methods Phys. Res. A 1997, 395, 328–343. [Google Scholar] [CrossRef]
- Lange, J.; Giannini, G.; Grinstein, S.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, S. Radiation hardness of small-pitch 3D pixel sensors up to a fluence of 3 × 1016 neq/cm2. J. Instrum. 2018, 13, P09009. [Google Scholar] [CrossRef]
- Da Vià, C.; Watts, S.J. The geometrical dependence of radiation hardness in planar and 3D silicon detectors. Nucl. Instrum. Methods A 2009, 603, 319–324. [Google Scholar] [CrossRef]
- Da Vià, C.; Boscardin, M.; Dalla Betta, G.-F.; Darbo, G.; Fleta, C.; Gemme, C.; Grenier, P.; Grinstein, S.; Hansen, T.; Hasi, J.; et al. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade. Nucl. Instrum. Methods A 2012, 694, 321–330. [Google Scholar] [CrossRef]
- A Toroidal LHC ApparatuS (ATLAS). Available online: https://atlas.cern (accessed on 15 July 2025).
- Currás, E.; Duarte-Campderrós, J.; Fernández, M.; García, A.; Gómez, G.; González, J.; Jaramillo, R.; Moya, D.; Vila, I.; Hidalgo, S.; et al. Study of small-cell 3D silicon pixel detectors for the high luminosity LHC. Nucl. Instrum. Methods A 2019, 931, 127–134. [Google Scholar] [CrossRef]
- Bergsagel, Ø.; Calderini, G.; Carcone, T.I.; Carlotto, J.I.; Chabrillat, P.; Dorholt, O.; Gemme, C.; Grigorev, A.; Heim, T.; Hassan, S.; et al. Test Beam Results of SINTEF 3D Pixel Silicon Sensors. Proc. Sci. 2023, VERTEX2023, 076. [Google Scholar] [CrossRef]
- Meschini, M.; Cassese, A.; Ceccarelli, R.; Viliani, L.; Dinardo, M.; Gennai, S.; Zuolo, D.; Messineo, A.; Parolia, S.; Ebrahimi, A.; et al. Radiation resistant innovative 3D pixel sensors for the CMS upgrade at the High Luminosity LHC. Nucl. Instrum. Methods A 2020, 978, 164429. [Google Scholar] [CrossRef]
- Compact Muon Solenoid (CMS). Available online: https://cms.cern (accessed on 15 July 2025).
- Dalla Betta, G.-F.; Boscardin, M.; Darbo, G.; Mendicino, R.; Meschini, M.; Messineo, A.; Ronchin, S.; Sultan, D.M.S.; Zorzi, N. Development of a new generation of 3D pixel sensors for HL-LHC. Nucl. Instrum. Methods A 2016, 824, 386–387. [Google Scholar] [CrossRef]
- Terzo, S.; Boscardin, M.; Carlotto, J.; Dalla Betta, G.-F.; Darbo, G.; Dorholt, O.; Ficorella, F.; Gariano, G.; Gemme, C.; Giannini, G.; et al. Novel 3D pixel sensors for the upgrade of the ATLAS Inner Tracker. Front. Phys. 2021, 9, 624668. [Google Scholar] [CrossRef]
- Zuolo, D. 3D silicon pixel sensors for the CMS experiment tracker upgrade. Nucl. Instrum. Methods A 2024, 1068, 169759. [Google Scholar] [CrossRef]
- Parker, S.; Kok, A.; Kenney, C.; Jarron, P.; Hasi, J.; Despeisse, M.; Da Vià, C.; Anelli, G. Increased Speed: 3D Silicon Sensors; Fast Current Amplifiers. IEEE Trans. Nucl. Sci. 2011, 58, 404–417. [Google Scholar] [CrossRef]
- Kramberger, G.; Cindro, V.; Flores, D.; Hidalgo, S.; Hiti, B.; Manna, M.; Mandić, I.; Mikuž, M.; Quirion, D.; Pellegrini, G.; et al. Timing performance of small cell 3D silicon detectors. Nucl. Instrum. Methods A 2019, 934, 26–32. [Google Scholar] [CrossRef]
- Anderlini, L.; Aresti, M.; Bizzeti, A.; Boscardin, M.; Cardini, A.; Dalla Betta, G.-F.; Ferrero, M.; Forcolin, G.; Garau, M.; Lai, A.; et al. Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection. J. Instrum. 2020, 15, P09029. [Google Scholar] [CrossRef]
- Eremin, V.; Verbitskaya, E. Analytical model for 3D detectors parametrization. Nucl. Instrum. Methods A 2010, 612, 516–520. [Google Scholar] [CrossRef]
- Pennicard, D.; Pellegrini, G.; Lozano, M.; Bates, R.; Parkes, C.; O’Shea, V.; Wright, V. Simulation results from Double-Sided 3-D Detectors. IEEE Trans. Nucl. Sci. 2007, 54.4, 1435–1443. [Google Scholar] [CrossRef]
- Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Mattedi, F.; Vianello, E.; Zorzi, N. Impact of the layout on the electrical characteristics of double-sided silicon 3D sensors fabricated at FBK. Nucl. Instrum. Methods A 2013, 699, 22–26. [Google Scholar] [CrossRef]
- Baselga, M.; Pellegrini, G.; Quirion, D. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade. Nucl. Instrum. Methods A 2017, 847, 67–76. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Cheng, W.; Li, Z.; Li, Z. Radiation Hardness Property of Ultra-Fast 3D-Trench Electrode Silicon Detector on N-Type Substrate. Micromachines 2021, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Boughedda, A.; Sultan, D.M.S.; Dalla Betta, G.-F. TCAD Analysis of Leakage Current and Breakdown Voltage in Small Pitch 3D Pixel Sensors. Sensors 2023, 23, 4732. [Google Scholar] [CrossRef] [PubMed]
- Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D.M.S.; et al. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors. J. Instrum. 2016, 11, P09006. [Google Scholar] [CrossRef]
- Dalla Betta, G.-F.; Boscardin, M.; Hoeferkamp, M.; Mendicino, R.; Seidel, S.; Sultan, D.M.S. Electrical characterization of FBK small-pitch 3D sensors after γ-ray, neutron and proton irradiations. J. Instrum. 2017, 12, C11028. [Google Scholar] [CrossRef]
- Richter, R.H.; Andricek, L.; Gebhart, T.; Hauff, D.; Kemmer, J.; Lutz, G.; Weiß, R.; Rolf, A. Strip detector design for ATLAS and HERA-B using two-dimensional device simulation. Nucl. Instrum. Methods A 1996, 377, 412–421. [Google Scholar] [CrossRef]
- Batignani, G.; Bosi, F.; Bosisio, L.; Conti, A.; Focardi, E.; Forti, F.; Giorgi, M.A.; Parrini, G.; Scarlini, E.; Tempesta, P.; et al. Double-sided readout silicon strip detectors for the ALEPH minivertex. Nucl. Instrum. Methods A 1989, 277, 147–153. [Google Scholar] [CrossRef]
- Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Koehler, M.; Parzefall, U.; Ronchin, S.; Wiik, L.; Zoboli, A.; Zorzi, N. Performance evaluation of 3D-DDTC detectors on p-type substrates. Nucl. Instrum. Methods A 2010, 624, 459–464. [Google Scholar] [CrossRef]
- Pellegrini, G.; Balbuena, J.P.; Bassignana, D.; Cabruja, E.; Fleta, C.; Guardiola, C.; Lozano, M.; Quirion, D.; Ullán, M. 3D double sided detector fabrication at IMB-CNM. Nucl. Instrum. Methods A 2013, 699, 27–30. [Google Scholar] [CrossRef]
- Heggelund, A.L.; Huiberts, S.; Dorholt, O.; Read, A.L.; Rohne, O.; Sandaker, H.; Lauritzen, M.; Stugu, B.; Kok, A.; Koybasi, O.; et al. Radiation hard 3D silicon pixel sensors for use in the ATLAS detector at the HL-LHC. J. Instrum. 2022, 17, P08003. [Google Scholar] [CrossRef]
- Boscardin, M.; Ferrari, S.; Ficorella, F.; Lai, A.; Mendicino, R.; Meschini, M.; Ronchin, S.; Arif Abdulla Samy, M.; Dalla Betta, G.-F. Advances in 3D sensor technology by using stepper lithography. Front. Phys. 2021, 9, 625275. [Google Scholar] [CrossRef]
- Pozza, A.; Maurizio Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Piemonte, C.; Ronchin, S.; Zorzi, N. First electrical characterization of 3D detectors with electrodes of the same doping type. Nucl. Instrum. Methods A 2007, 570, 317–321. [Google Scholar] [CrossRef]
- Eckert, S.; Jakobs, K.; Kühn, S.; Parzefall, U.; Boscardin, M.; Piemonte, C.; Ronchin, S. 3D stc sensors with different strip isolation schemes and substrate materials. Nucl. Instrum. Methods A 2008, 591, 117–120. [Google Scholar] [CrossRef]
- Piemonte, C. Device simulations of isolation techniques for silicon microstrip detectors made on p-type substrates. IEEE Trans. Nucl. Sci. 2006, 53.3, 1694–1705. [Google Scholar] [CrossRef]
- Chu, J.L.; Persky, G.; Sze, S.M. Thermionic injection and space-charge-limited current in reach-through p+np+ structures. J. Appl. Phys. 1972, 43, 3510–3516. [Google Scholar] [CrossRef]
- Iwata, Y.; Ohsugi, T.; Fujita, K.; Kitabayashi, H.; Yamamoto, K.; Yamamura, K.; Unno, Y.; Kondo, T.; Terada, S.; Kohriki, T.; et al. Optimal p-stop pattern for the n-side strip isolation of silicon microstrip detectors. IEEE Trans. Nucl. Sci. 1998, 45.3, 303–309. [Google Scholar] [CrossRef]
- Synopsys Inc. Sentaurus Device User Guide Version R-2020.09; Synopsys Inc.: San Jose, CA, USA, 2020; Available online: https://www.synopsys.com/manufacturing/tcad/device-simulation/sentaurus-device.html (accessed on 15 July 2025).
- Morozzi, A.; Moscatelli, F.; Croci, T.; Passeri, D. TCAD modeling of surface radiation damage effects: A state-of-the-art review. Front. Phys. 2021, 9, 617322. [Google Scholar] [CrossRef]
- Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G.M. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations. J. Instrum. 2017, 12, P12010. [Google Scholar] [CrossRef]
- Mandić, I.; Cindro, V.; Kramberger, G.; Kristof, E.S.; Mikuz, M.; Vrtacnik, D.; Ullan, M.; Anghinolfi, F. Bulk damage in DMILL npn bipolar transistors caused by thermal neutrons versus protons and fast neutrons. IEEE Trans. Nucl. Sci. 2004, 51, 1752–1758. [Google Scholar] [CrossRef]
- Morozzi, A.; Moscatelli, F.; Passeri, D.; Bilei, G.M. TCAD advanced radiation damage modeling in silicon detectors. Proc. Sci. 2020, Vertex2019, 050. [Google Scholar] [CrossRef]
- Passeri, D.; Morozzi, A. TCAD Radiation Damage Model, AIDA-2020-D7.4 Deliverable Report. 2019. Available online: https://cds.cern.ch/search?p=AIDA-2020-D7.4 (accessed on 15 July 2025).
- Loddo, F.; Andreazza, A.; Arteche, F.; Barbero, M.B.; Barillon, P.; Beccherle, R.; Bilei, G.M.; Bjalas, W.; Bonaldo, S.; Bortoletto, D.; et al. RD53 pixel chips for the ATLAS and CMS Phase-2 upgrades at HL-LHC. Nucl. Instrum. Methods A 2024, 1067, 169682. [Google Scholar] [CrossRef]
- Slotboom, J.W.; Streutker, G.; Davids, G.J.T.; Hartog, P.B. Surface impact ionization in silicon devices. In Proceedings of the 1987 International Electron Devices Meeting, Washington, DC, USA, 6–9 December 1987; Volume 20.1, pp. 494–497. [Google Scholar] [CrossRef]
- Moll, M. Displacement damage in silicon detectors for High Energy Physics. IEEE Trans. Nucl. Sci. 2018, 65, 1561–1582. [Google Scholar] [CrossRef]
- Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Li, Z.; Härkönen, J. Avalanche effect in Si heavily irradiated detectors: Physical model and perspectives for application. Nucl. Instrum. Methods A 2011, 658, 145–151. [Google Scholar] [CrossRef]
- Unno, Y.; Kohriki, T.; Kondo, T.; Terada, S.; Ohsugi, T.; Iwata, Y.; Takashima, R.; Nakano, I.; Yamamura, K.; Yamamoto, K. Novel p-stop structure in n-side of silicon microstrip detector. Nucl. Instrum. Methods A 2005, 541, 90–96. [Google Scholar] [CrossRef]
- Pellegrini, G.; Manna, M.; Quirion, D. 3D-Si single sided sensors for the innermost layer of the ATLAS pixel upgrade. Nucl. Instrum. Methods A 2019, 924, 69–72. [Google Scholar] [CrossRef]
- Sultan, D.M.S.; Arif Abdulla Samy, M.; Ye, J.X.; Boscardin, M.; Ficorella, F.; Ronchin, S.; Dalla Betta, G.-F. Quality Control (QC) of FBK preproduction 3D Si sensors for ATLAS HL-LHC Upgrades. J. Instrum. 2022, 17, C12016. [Google Scholar] [CrossRef]
- Povoli, M. Development of enhanced double-sided 3D radiation sensors for pixel detector upgrades at HL-LHC. Ph.D. Thesis, University of Trento, Trento, Italy, 2013. Available online: https://jinst.sissa.it/jinst/theses/2015_JINST_TH_004.jsp (accessed on 15 July 2025).
- Dalla Betta, G.-F.; Boscardin, M.; Bomben, M.; Brianzi, M.; Calderini, G.; Darbo, G.; Dell’Orso, R.; Gaudiello, A.; Giacomini, G.; Mendicino, R.; et al. The INFN–FBK “Phase-2” R&D program. Nucl. Instrum. Methods A 2016, 824, 388–391. [Google Scholar] [CrossRef]
TID | () | () | () |
---|---|---|---|
Pre-irradiation | |||
10 Mrad | |||
20 Mrad | |||
100 Mrad |
Trap Type | Energy (eV) | Concentration () | () | () |
---|---|---|---|---|
Donor | − 0.23 | |||
Acceptor 1 | − 0.42 | |||
Acceptor 2 | − 0.46 |
p-Stop, Meas (r = 4.0 m) | p-Stop, Sim (r = 4.0 m) | p-Spray, Meas (r = 2.5 m) | p-Spray, Sim (r = 2.5 m) | |
---|---|---|---|---|
Pre-irradiation | 127 ± 14 V [48] | 138 V | 128 ± 8 V [13] | 125 V |
F = 1.0 × | 173 ± 12 V [13] | 169 V | 133 ± 16 V [13] | 145 V |
F = 1.5 × | 206 ± 13 V [13] | 180 V | 145 ± 7 V [13] | 153 V |
Isolation Configuration | Radiation Condition | Width (Only for p-Stop) | ||||
---|---|---|---|---|---|---|
2 m | 3 m | 4 m | 5 m | 6 m | ||
p-stop Pos = 6 m | Pre-irradiation | 205 V | 181 V | 166 V | 153 V | 143 V |
Surface damage | 103 V | 121 V | 128 V | 132 V | 118 V | |
Surface + bulk damage | 227 V | 220 V | 211 V | 204 V | 195 V | |
p-stop Pos = 8 m | Pre-irradiation | 248 V | 224 V | 208 V | 194 V | 182 V |
Surface damage | 121 V | 128 V | 137 V | 143 V | 130 V | |
Surface + bulk damage | 256 V | 244 V | 234 V | 226 V | 216 V | |
p-stop Pos = 10 m | Pre-irradiation | 293 V | 276 V | 258 V | 242 V | 226 V |
Surface damage | 127 V | 137 V | 146 V | 148 V | 133 V | |
Surface + bulk damage | 270 V | 264 V | 259 V | 249 V | 240 V | |
p-stop Pos = 12 m | Pre-irradiation | 299 V | 292 V | 282 V | 270 V | 257 V |
Surface damage | 131 V | 144 V | 150 V | 137 V | 122 V | |
Surface + bulk damage | 276 V | 271 V | 267 V | 261 V | 254 V | |
p-spray | Pre-irradiation | 134 V | ||||
Surface damage | 264 V | |||||
Surface + bulk damage | 248 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Dalla Betta, G.-F. Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors. Sensors 2025, 25, 4478. https://doi.org/10.3390/s25144478
Ye J, Dalla Betta G-F. Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors. Sensors. 2025; 25(14):4478. https://doi.org/10.3390/s25144478
Chicago/Turabian StyleYe, Jixing, and Gian-Franco Dalla Betta. 2025. "Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors" Sensors 25, no. 14: 4478. https://doi.org/10.3390/s25144478
APA StyleYe, J., & Dalla Betta, G.-F. (2025). Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors. Sensors, 25(14), 4478. https://doi.org/10.3390/s25144478